Détail de l'auteur
Auteur Maria Trocan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unsupervised satellite image time series analysis using deep learning techniques / Ekaterina Kalinicheva (2020)
Titre : Unsupervised satellite image time series analysis using deep learning techniques Type de document : Thèse/HDR Auteurs : Ekaterina Kalinicheva , Auteur ; Maria Trocan, Directeur de thèse Editeur : Paris : Sorbonne Université Année de publication : 2020 Importance : 182 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse pour obtenir le doctorat de la Sorbonne Université, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage non-dirigé
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 5
[Termes IGN] réseau neuronal profond
[Termes IGN] réseau neuronal récurrent
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse présente un ensemble d'algorithmes non-supervisés pour l'analyse générique de séries temporelles d'images satellites (STIS). Nos algorithmes exploitent des méthodes de machine learning et, notamment, les réseaux de neurones afin de détecter les différentes entités spatio-temporelles et leurs changements éventuels dans le temps. Nous visons à identifier trois types de comportement temporel : les zones sans changements, les changements saisonniers, les changements non triviaux (changements permanents comme les constructions, la rotation des cultures agricoles, etc). Par conséquent, nous proposons deux frameworks : pour la détection et le clustering des changements non-triviaux et pour le clustering des changements saisonniers et des zones sans changements. Le premier framework est composé de deux étapes : la détection de changements bi-temporels et leur interprétation dans le contexte multi-temporel avec une approche basée graphes. La détection de changements bi-temporels est faite pour chaque couple d’images consécutives et basée sur la transformation des features avec les autoencodeurs (AEs). A l’étape suivante, les changements à différentes dates qui appartiennent à la même zone géographique forment les graphes d’évolution qui sont par la suite clusterisés avec un modèle AE de réseaux de neurones récurrents. Le deuxième framework présente le clustering basé objets de STIS. Premièrement, la STIS est encodée en image unique avec un AE convolutif 3D multi-vue. Dans un deuxième temps, nous faisons la segmentation en deux étapes en utilisant à la fois l’image encodée et la STIS. Finalement, les segments obtenus sont clusterisés avec leurs descripteurs encodés. Note de contenu : 1. Introduction to Remote Sensing and Satellite Image Analysis
1.1 Introduction
1.2 Remote Sensing Images
1.3 Satellite Missions
1.4 Introduction to Data Mining Applied to Images
2. Machine Learning. Clustering and Anomaly Detection
2.1 Introduction
2.2 Unsupervised Learning
2.3 Clustering
2.4 Anomaly Detection
2.5 Quality Indices
2.6 Discussion
3. Feature Extraction using Deep Learning Techniques
3.1 Introduction
3.2 Deep Learning
3.3 AutoEncoders in Image Processing
3.4 Neural Networks Structure
3.5 Discussion
4. Bi-temporal Change Detection
4.1 Introduction
4.2 Related Works
4.3 Methodology
4.4 Data
4.5 Experiments
4.6 Discussion
5. Multi-temporal Change Detection
5.1 Introduction
5.2 Related Works
5.3 Methodology
5.4 Data
5.5 Experiments
5.6 Conclusion
6. Satellite Image Time Series Clustering
6.1 Introduction
6.2 Related Works
6.3 Methodology
6.4 Data
6.5 Experiments
6.6 Discussion
7. Conclusion
7.1 Thesis Contributions
7.2 Short Term Perspectives
7.3 Long Term Perspectives and LimitationsNuméro de notice : 26536 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Sorbonne université : 2020 Organisme de stage : ISEP Institut Supérieur d'Electronique de Paris nature-HAL : Thèse DOI : sans Date de publication en ligne : 01/03/2021 En ligne : https://tel.archives-ouvertes.fr/tel-03032071/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97681