Détail de l'auteur
Auteur Fang Luo |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Dynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Dynamic linkage between urbanization, electrical power consumption, and suitability analysis using remote sensing and GIS techniques Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Qimin Cheng, Auteur ; Fang Luo, Auteur Année de publication : 2022 Article en page(s) : pp 171 - 179 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] consommation
[Termes IGN] densité de population
[Termes IGN] éclairage public
[Termes IGN] électricité
[Termes IGN] étalement urbain
[Termes IGN] image DMSP-OLS
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] Pakistan
[Termes IGN] prise de vue nocturne
[Termes IGN] urbanisationRésumé : (auteur) This article proposes an estimation method for assessing urban sprawl using multispectral remote sensing data: SNPP-VIIRS, DMSP/OLS, Landsat 5-TM, and Landsat 8-OLI. This study focuses on the impacts of human activities, in terms of increased electrical-power consumption (EPC) due to urbanization. For this purpose, night-time light data are used to measure the EPC growth from 2000 to 2020. We also perform a suitability analysis using geographic information-systems techniques to propose a new urban town in Lahore to mitigate urbanization and EPC increase. We found an overall increase of 33% in urban area and an EPC increase of 21.6% in the last two decades. We also find that the best proposed site for the new urban town is in the northwest of Lahore. Numéro de notice : A2022-201 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00026R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.21-00026R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100004
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 171 - 179[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery / Neema Nicodemus Lyimo in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 5 (May 2021)
[article]
Titre : Quality assessment of heterogeneous training data sets for classification of urban area with Landsat imagery Type de document : Article/Communication Auteurs : Neema Nicodemus Lyimo, Auteur ; Fang Luo, Auteur ; Qimin Cheng, Auteur ; Hao Peng, Auteur Année de publication : 2021 Article en page(s) : pp 339-348 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement d'images
[Termes IGN] distance euclidienne
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] données hétérogènes
[Termes IGN] données localisées des bénévoles
[Termes IGN] données massives
[Termes IGN] données ouvertes
[Termes IGN] image Landsat
[Termes IGN] incertitude des données
[Termes IGN] jeu de données localisées
[Termes IGN] qualité des données
[Termes IGN] système à base de connaissances
[Termes IGN] zone urbaineRésumé : (Auteur) Quality assessment of training samples collected from heterogeneous sources has received little attention in the existing literature. Inspired by Euclidean spectral distance metrics, this article derives three quality measures for modeling uncertainty in spectral information of open-source heterogeneous training samples for classification with Landsat imagery. We prepared eight test case data sets from volunteered geographic information and open government data sources to assess the proposed measures. The data sets have significant variations in quality, quantity, and data type. A correlation analysis verifies that the proposed measures can successfully rank the quality of heterogeneous training data sets prior to the image classification task. In this era of big data, pre-classification quality assessment measures empower research scientists to select suitable data sets for classification tasks from available open data sources. Research findings prove the versatility of the Euclidean spectral distance function to develop quality metrics for assessing open-source training data sets with varying characteristics for urban area classification. Numéro de notice : A2021-366 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.87.5.339 Date de publication en ligne : 01/05/2021 En ligne : https://doi.org/10.14358/PERS.87.5.339 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97695
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 5 (May 2021) . - pp 339-348[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021051 SL Revue Centre de documentation Revues en salle Disponible