Détail de l'auteur
Auteur Yujun Shen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Semantic hierarchy emerges in deep generative representations for scene synthesis / Ceyuan Yang in International journal of computer vision, vol 129 n° 5 (May 2021)
[article]
Titre : Semantic hierarchy emerges in deep generative representations for scene synthesis Type de document : Article/Communication Auteurs : Ceyuan Yang, Auteur ; Yujun Shen, Auteur ; Bolei Zhou, Auteur Année de publication : 2021 Article en page(s) : pp 1451 - 1466 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] apprentissage profond
[Termes IGN] compréhension de l'image
[Termes IGN] représentation des connaissances
[Termes IGN] réseau antagoniste génératif
[Termes IGN] segmentation hiérarchique
[Termes IGN] segmentation sémantique
[Termes IGN] synthèse d'imageRésumé : (auteur) Despite the great success of Generative Adversarial Networks (GANs) in synthesizing images, there lacks enough understanding of how photo-realistic images are generated from the layer-wise stochastic latent codes introduced in recent GANs. In this work, we show that highly-structured semantic hierarchy emerges in the deep generative representations from the state-of-the-art GANs like StyleGAN and BigGAN, trained for scene synthesis. By probing the per-layer representation with a broad set of semantics at different abstraction levels, we manage to quantify the causality between the layer-wise activations and the semantics occurring in the output image. Such a quantification identifies the human-understandable variation factors that can be further used to steer the generation process, such as changing the lighting condition and varying the viewpoint of the scene. Extensive qualitative and quantitative results suggest that the generative representations learned by the GANs with layer-wise latent codes are specialized to synthesize various concepts in a hierarchical manner: the early layers tend to determine the spatial layout, the middle layers control the categorical objects, and the later layers render the scene attributes as well as the color scheme. Identifying such a set of steerable variation factors facilitates high-fidelity scene editing based on well-learned GAN models without any retraining (code and demo video are available at https://genforce.github.io/higan). Numéro de notice : A2021-408 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-020-01429-5 Date de publication en ligne : 10/02/2021 En ligne : https://doi.org/10.1007/s11263-020-01429-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97725
in International journal of computer vision > vol 129 n° 5 (May 2021) . - pp 1451 - 1466[article]