Détail de l'auteur
Auteur Hongzhu Han |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A combined drought monitoring index based on multi-sensor remote sensing data and machine learning / Hongzhu Han in Geocarto international, vol 36 n° 10 ([01/06/2021])
[article]
Titre : A combined drought monitoring index based on multi-sensor remote sensing data and machine learning Type de document : Article/Communication Auteurs : Hongzhu Han, Auteur ; Jianjun Bai, Auteur ; Jianwu Yan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1161-1177 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Chensi (Chine)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] évapotranspiration
[Termes IGN] humidité du sol
[Termes IGN] image Terra-MODIS
[Termes IGN] image TRMM-MI
[Termes IGN] indice d'humidité
[Termes IGN] indice de végétation
[Termes IGN] précipitation
[Termes IGN] sécheresse
[Termes IGN] surveillance météorologique
[Termes IGN] température au solRésumé : (Auteur) The occurrence of drought is related to complicated interactions between many factors, such as precipitation, temperature, evapotranspiration and vegetation. In this study, the relationships between drought and precipitation, temperature, vegetation and evapotranspiration were investigated with a random forest (RF), and a new combined drought monitoring index (CDMI) was constructed. The effectiveness of the CDMI in monitoring drought in Shaanxi Province was verified by the in situ 1 ∼ 12-month standardized precipitation index (SPI); relative soil moisture (RSM) and four other commonly used remote sensing drought monitoring indices. The results show that CDMI is more correlated with the SPI and RSM than the four indices. Moreover, the spatial distributions of drought for the CDMI and RSM are similar. Therefore, the CDMI can be used to monitor droughts in Shaanxi Province, and machine learning can explore the relationships between various factors and establish a drought index without knowledge of the causal mechanisms of these factors. Numéro de notice : A2021-369 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1633423 Date de publication en ligne : 27/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1633423 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97734
in Geocarto international > vol 36 n° 10 [01/06/2021] . - pp 1161-1177[article]