Détail de l'auteur
Auteur Bin Zhang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods / Bin Zhang in GIScience and remote sensing, vol 59 n° 1 (2022)
[article]
Titre : Exploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods Type de document : Article/Communication Auteurs : Bin Zhang, Auteur ; Haijun Wang, Auteur Année de publication : 2022 Article en page(s) : pp 71 - 95 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] automate cellulaire
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] croissance urbaine
[Termes IGN] entropie maximale
[Termes IGN] modèle de simulation
[Termes IGN] paysage urbain
[Termes IGN] Pékin (Chine)
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)Résumé : (auteur) As a powerful predictive technique based on machine learning, the maximum entropy (MaxEnt) model has been widely used in geographic modeling. However, its performance in calibrating cellular automata (CA) for urban growth simulation has not been investigated. This study compares the MaxEnt model with logistic regression (LR), artificial neural network (ANN), and support vector machine (SVM) models to explore its advantages in simulating urban growth and interpreting driving mechanisms. With the land use data of 2000 and 2020 from GlobeLand30, the constructed LR-CA, ANN-CA, SVM-CA, and MaxEnt-CA models are applied to simulate the urban growth of Beijing, Tianjin, and Wuhan, respectively. Their performance has been evaluated from multiple aspects such as the accuracy of training, testing, and projecting, computational efficiency, simulation accuracy, and simulated urban landscape. The results indicate that the MaxEnt model is superior to the other models except for the computational efficiency, but the time required for the MaxEnt training and projecting is acceptable and far less than that of the SVM. Taking the LR-CA as the benchmark, the kappa coefficients (Kappa) of the MaxEnt-CA have been increased by 4.20%, 3.38%, and 5.87% in Beijing, Tianjin, and Wuhan, respectively; the increments of corresponding figure of merits (FoM) are 6.26%, 4.58%, and 8.49%. The driving mechanisms of urban growth such as the interactions, response curves, and importance of spatial variables, have also been revealed by the MaxEnt modeling. The driving mechanisms of urban growth in Tianjin are more complex than that in Beijing and Wuhan, because there are more variable interactions; the relationships between spatial factors and urban growth in the three study areas are all nonlinear; the topographic factors and city center of Beijing, the traffic factors and water bodies of Tianjin, and the traffic factors, city center and water bodies of Wuhan are significant factors affecting their urban growth. Numéro de notice : A2022-130 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/15481603.2021.2016240 Date de publication en ligne : 30/12/2021 En ligne : https://doi.org/10.1080/15481603.2021.2016240 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99715
in GIScience and remote sensing > vol 59 n° 1 (2022) . - pp 71 - 95[article]Spatio-temporal linking of multiple SAR satellite data from medium and high resolution Radarsat-2 images / Bin Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
[article]
Titre : Spatio-temporal linking of multiple SAR satellite data from medium and high resolution Radarsat-2 images Type de document : Article/Communication Auteurs : Bin Zhang, Auteur ; Ling Chang, Auteur ; Alfred Stein, Auteur Année de publication : 2021 Article en page(s) : pp 222 - 236 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] déformation de surface
[Termes IGN] données spatiotemporelles
[Termes IGN] image radar moirée
[Termes IGN] image Radarsat
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] points homologues
[Termes IGN] série temporelleRésumé : (auteur) A recent development in Interferometric Synthetic Aperture Radar (InSAR) technology is integrating multiple SAR satellite data to dynamically extract ground features. This paper addresses two relevant challenges: identification of common ground targets from different SAR datasets in space, and concatenation of time series when dealing with temporal dynamics. To address the first challenge, we describe the geolocation uncertainty of InSAR measurements as a three-dimensional error ellipsoid. The points, among InSAR measurements, which have error ellipsoids with a positive cross volume are identified as tie-point pairs representing common ground objects from multiple SAR datasets. The cross volumes are calculated using Monte Carlo methods and serve as weights to achieve the equivalent deformation time series. To address the second challenge, the deformation time series model for each tie-point pair is estimated using probabilistic methods, where potential deformation models are efficiently tested and evaluated. As an application, we integrated two Radarsat-2 datasets in Standard and Extra-Fine modes to map the subsidence of the west of the Netherlands between 2010 and 2017. We identified 18128 tie-point pairs, 5 intersection types of error ellipsoids, 5 deformation models, and constructed their long-term deformation time series. The detected maximum mean subsidence velocity in Line-Of-Sight direction is up to 15 . We conclude that our method removes limitations that exist in single-viewing-geometry SAR when integrating multiple SAR data. In particular, the proposed time-series modeling method is useful to achieve a long-term deformation time series of multiple datasets. Numéro de notice : A2021-414 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.005 Date de publication en ligne : 08/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.005 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97745
in ISPRS Journal of photogrammetry and remote sensing > vol 176 (June 2021) . - pp 222 - 236[article]