Détail de l'auteur
Auteur Tongxi Hu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine / Tongxi Hu in ISPRS Journal of photogrammetry and remote sensing, vol 176 (June 2021)
[article]
Titre : Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine Type de document : Article/Communication Auteurs : Tongxi Hu, Auteur ; Elizabeth Myers Toman, Auteur ; Gang Chen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 250 - 261 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bassin hydrographique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification bayesienne
[Termes IGN] détection de changement
[Termes IGN] estimation bayesienne
[Termes IGN] Google Earth Engine
[Termes IGN] image Landsat
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelleRésumé : (auteur) Large fractions of human-altered lands are working landscapes where people and nature interact to balance social, economic, and ecological needs. Achieving these sustainability goals requires tracking human footprints and landscape disturbance at fine scales over time—an effort facilitated by remote sensing but still under development. Here, we report a satellite time-series analysis approach to detecting fine-scale human disturbances in an Ohio watershed dominated by forests and pastures but with diverse small-scale industrial activities such as hydraulic fracturing (HF) and surface mining. We leveraged Google Earth Engine to stack decades of Landsat images and explored the effectiveness of a fuzzy change detection algorithm called the Bayesian Estimator of Abrupt change, Seasonality, and Trend (BEAST) to capture fine-scale disturbances. BEAST is an ensemble method, capable of estimating changepoints probabilistically and identifying sub-pixel disturbances. We found the algorithm can successfully capture the patterns and timings of small-scale disturbances, such as grazing, agriculture management, coal mining, HF, and right-of-ways for gas and power lines, many of which were not captured in the annual land cover maps from Cropland Data Layers—one of the most widely used classification-based land dynamics products in the US. For example, BEAST could detect the initial HF wellpad construction within 60 days of the registered drilling dates on 88.2% of the sites. The wellpad footprints were small, disturbing only 0.24% of the watershed in area, which was dwarfed by other activities (e.g., right-of-ways of utility transmission lines). Together, these known activities have disturbed 9.7% of the watershed from the year 2000 to 2017 with evergeen forests being the most affected land cover. This study provides empirical evidence on the effectiveness and reliability of BEAST for changepoint detection as well as its capability to detect disturbances from satellite images at sub-pixel levels and also documents the value of Google Earth Engine and satellite time-series imaging for monitoring human activities in complex working landscapes. Numéro de notice : A2021-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.008 Date de publication en ligne : 17/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97746
in ISPRS Journal of photogrammetry and remote sensing > vol 176 (June 2021) . - pp 250 - 261[article]