Détail de l'auteur
Auteur Eojin Lee |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration / Daeyong Jin in Remote sensing, vol 13 n°10 (May-2 2021)
[article]
Titre : A deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration Type de document : Article/Communication Auteurs : Daeyong Jin, Auteur ; Eojin Lee, Auteur ; Kyonghwan Kwon, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 2003 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage profond
[Termes IGN] chlorophylle
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corée du sud
[Termes IGN] distribution spatiale
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] hydrodynamique
[Termes IGN] image COMS-GOCIRésumé : (auteur) In this study, we used convolutional neural networks (CNNs)—which are well-known deep learning models suitable for image data processing—to estimate the temporal and spatial distribution of chlorophyll-a in a bay. The training data required the construction of a deep learning model acquired from the satellite ocean color and hydrodynamic model. Chlorophyll-a, total suspended sediment (TSS), visibility, and colored dissolved organic matter (CDOM) were extracted from the satellite ocean color data, and water level, currents, temperature, and salinity were generated from the hydrodynamic model. We developed CNN Model I—which estimates the concentration of chlorophyll-a using a 48 × 27 sized overall image—and CNN Model II—which uses a 7 × 7 segmented image. Because the CNN Model II conducts estimation using only data around the points of interest, the quantity of training data is more than 300 times larger than that of CNN Model I. Consequently, it was possible to extract and analyze the inherent patterns in the training data, improving the predictive ability of the deep learning model. The average root mean square error (RMSE), calculated by applying CNN Model II, was 0.191, and when the prediction was good, the coefficient of determination (R2) exceeded 0.91. Finally, we performed a sensitivity analysis, which revealed that CDOM is the most influential variable in estimating the spatiotemporal distribution of chlorophyll-a. Numéro de notice : A2021-417 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs13102003 Date de publication en ligne : 20/05/2021 En ligne : https://doi.org/10.3390/rs13102003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97759
in Remote sensing > vol 13 n°10 (May-2 2021) . - n° 2003[article]