Détail de l'auteur
Auteur Florent Abdelghafour |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Potentialités de l’imagerie couleur embarquée pour la détection et la cartographie des maladies fongiques de la vigne / Florent Abdelghafour (2019)
Titre : Potentialités de l’imagerie couleur embarquée pour la détection et la cartographie des maladies fongiques de la vigne Type de document : Thèse/HDR Auteurs : Florent Abdelghafour, Auteur ; Jean-Pierre Da Costa, Directeur de thèse ; Christian Germain, Directeur de thèse Editeur : Bordeaux : Université de Bordeaux Année de publication : 2019 Importance : 174 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour obtenir le grade Docteur, Automatique, Productique, Signal et Image, Ingénierie CognitiveLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] classification dirigée
[Termes IGN] classification pixellaire
[Termes IGN] image en couleur
[Termes IGN] instrument embarqué
[Termes IGN] maladie phytosanitaire
[Termes IGN] modèle stochastique
[Termes IGN] seuillage d'image
[Termes IGN] surveillance de la végétation
[Termes IGN] tenseur
[Termes IGN] texture d'image
[Termes IGN] traitement d'image
[Termes IGN] viticultureIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Le mildiou de la vigne est une phytopathologie d'origine fongique particulièrement inquiétante pour la filière viticole. L'objectif de cette thèse est d'étudier les potentialités de l'imagerie couleur embarquée pour estimer l'état sanitaire des vignobles affectés par le mildiou à l'échelle intra-parcellaire. La solution proposée vise à assister les réseaux de surveillance épidémiologique dans l'estimation des risques sanitaires et dans la préconisation de plans de lutte chimique. En pratique, la chaîne de traitement d'images construite est dédiée à la détection, au dénombrement et à la mesure des tissus symptomatiques du mildiou. Cette chaîne est conçue pour traiter des images acquises directement à la parcelle dans les conditions de travail viticole.La chaîne de traitement s’appuie des représentations structure-couleur et des modèles probabilistes des classes des tissus présents dans les vignes étudiées. Elle opère en trois étapes : formuler des descripteurs pour extraire les propriétés caractéristiques et discriminantes de chaque classe ; modéliser les distributions statistiques de ces descripteurs dans chacune des classes ; affecter chaque pixel à une classe selon son adéquation à leurs modèles. Les descripteurs combinent le tenseur local de structure (LST) avec des statistiques colorimétriques calculées dans le voisinage du pixel considéré. Pour tenir compte de la nature spécifique des LST, les descripteurs font l'objet de transformations pour être représentés dans l'espace log-euclidien. Dans cet espace, il devient possible de modéliser les classes de tissus d'intérêt par des distributions de mélanges de gaussiennes multivariées des représentations structure-couleur. Enfin, la classification est réalisée par Maximum A Posteriori (MAP). Cette chaîne de traitement est appliquée dans un premier temps à des images de vigne saine. Il s'agit de segmenter une image en classes d'organes (feuillage, grappes ou inflorescences et tiges). Les classifications réalisées se montrent très performantes. De plus, la chaîne de traitement s'avère robuste au réglage des principaux hyper-paramètres.Dans un second temps, la chaîne de traitement est adaptée pour traiter des images comportant des symptômes du mildiou ainsi que des facteurs confondants tels que nécroses, décolorations, carences, plaies mécaniques. La méthode de décision s’appuie sur une reconstruction des symptômes par croissance autour de germes. Les critères utilisés reposent sur les représentations structure-couleur et les modèles probabilistes déjà définis. La nouvelle chaîne de traitement permet de détecter de façon fiable les symptômes du mildiou et d'estimer la surface des tissus affectés. Note de contenu : Introduction
1- Etat de l'art
2- -Dispositif expérimental : matériel végétal, instrumentation et protocole de suivi
3- Modéliser conjointement la texture et la couleur dans les images de proxi-détection
4- Reconnaissance des organes de la vigne
5- Détection des symptômes du mildiou de la vigne et estimation de l’intensité de l’infection
Conclusion et perspectivesNuméro de notice : 28573 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Automatique, Productique, Signal et Image, Ingénierie Cognitive : Bordeaux : 2019 Organisme de stage : Laboratoire de l’Intégration du Matériau au Système (Talence) nature-HAL : Thèse En ligne : https://tel.archives-ouvertes.fr/tel-02499420/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97765