Détail de l'auteur
Auteur Katleen Bergen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Model-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing / Michael L. Benson in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Model-based estimation of forest canopy height and biomass in the Canadian boreal forest using radar, LiDAR, and optical remote sensing Type de document : Article/Communication Auteurs : Michael L. Benson, Auteur ; Pierce Leland, Auteur ; Katleen Bergen, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 4635 - 4653 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] Canada
[Termes IGN] canopée
[Termes IGN] couvert forestier
[Termes IGN] données de terrain
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt boréale
[Termes IGN] hauteur des arbres
[Termes IGN] image Landsat-TM
[Termes IGN] image radar moirée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] lasergrammétrie
[Termes IGN] Leaf Area Index
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] polarimétrie radar
[Termes IGN] structure d'un peuplement forestierRésumé : (auteur) One of the fundamental technical challenges of any new spaceborne vegetation remote sensing mission is the determination of what sensor(s) to place onboard and what, if any, overlapping modes of operation they will employ as each onboard sensor adds significant cost to the overall mission. In this article, the remote sensing of forest parameters using multimodal remote sensing is presented. In particular, polarimetric radar, Light Detection And Ranging (LiDAR), and near-IR passive optical sensing platforms are employed in conjunction with physics-based models. These models are used to accurately estimate forest aboveground biomass as well as canopy height in homogeneous areas. It is shown that this proposed method is capable of achieving high accuracy estimates while using minimal ancillary data in the estimation process. We present a method to combine measured data sets with our geometric and electromagnetic sensor models to develop a forest parameter estimation algorithm that fuses multimodal remote sensing technologies with a minimal amount of ground information and yields an accurate estimate of forest structure including dry biomass and canopy height with rms errors of 1.6 kg/m 2 and 1.68 m respectively. Numéro de notice : A2021-423 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3018638 Date de publication en ligne : 09/09/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3018638 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97778
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp 4635 - 4653[article]