Détail de l'auteur
Auteur Hanqing Jiang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization / Jiali Han in ISPRS Journal of photogrammetry and remote sensing, vol 177 (July 2021)
[article]
Titre : Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization Type de document : Article/Communication Auteurs : Jiali Han, Auteur ; Mengqi Rong, Auteur ; Hanqing Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 57 - 74 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] espace intérieur
[Termes IGN] maillage
[Termes IGN] programmation linéaire
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] reconstruction d'objet
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] vectorisationRésumé : (Auteur) Vectorized reconstruction from indoor point cloud has attracted increasing attention in recent years due to its high regularity and low memory consumption. Compared with aerial mapping of outdoor urban environments, indoor point cloud generated by LiDAR scanning or image-based 3D reconstruction usually contain more clutter and missing areas, which greatly increase the difficulty of vectorized reconstruction. In this paper, we propose an effective multistep pipeline to reconstruct vectorized models from indoor point cloud without the Manhattan or Atlanta world assumptions. The core idea behind our method is the combination of a sequence of 2D segment or cell assembly problems that are defined as global optimizations while reducing the reconstruction complexity and enhancing the robustness to different scenes. The proposed method includes a semantic segmentation stage and a reconstruction stage. First, we segment the permanent structures of indoor scenes, including ceilings, floors, walls and cylinders, from the input data, and then, we reconstruct these structures in sequence. The floorplan is first generated by detecting wall planes and selecting optimal subsets of projected wall segments with Integer Linear Programming (ILP), followed by constructing a 2D arrangement and recovering the ceiling and floor structures by Markov Random Field (MRF) labeling on the arrangement. Finally, the wall structures are modeled by lifting each edge of the arrangement to a proper height by means of another global optimization. Merging the respective results yields the final model. The experimental results show that the proposed method could obtain accurate and compact vectorized models on both precise LiDAR data and defect-laden MVS data compared with other state-of-the-art approaches. Numéro de notice : A2021-371 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.04.019 Date de publication en ligne : 15/05/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.04.019 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97779
in ISPRS Journal of photogrammetry and remote sensing > vol 177 (July 2021) . - pp 57 - 74[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021071 SL Revue Centre de documentation Revues en salle Disponible 081-2021073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt