Détail de l'auteur
Auteur Arto Klami |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiscale cloud detection in remote sensing images using a dual convolutional neural network / Markku Luotamo in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
[article]
Titre : Multiscale cloud detection in remote sensing images using a dual convolutional neural network Type de document : Article/Communication Auteurs : Markku Luotamo, Auteur ; Sari Metsämäki, Auteur ; Arto Klami, Auteur Année de publication : 2021 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification pixellaire
[Termes IGN] détection des nuages
[Termes IGN] granularité d'image
[Termes IGN] image Sentinel-MSI
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Semantic segmentation by convolutional neural networks (CNN) has advanced the state of the art in pixel-level classification of remote sensing images. However, processing large images typically requires analyzing the image in small patches, and hence, features that have a large spatial extent still cause challenges in tasks, such as cloud masking. To support a wider scale of spatial features while simultaneously reducing computational requirements for large satellite images, we propose an architecture of two cascaded CNN model components successively processing undersampled and full-resolution images. The first component distinguishes between patches in the inner cloud area from patches at the cloud’s boundary region. For the cloud-ambiguous edge patches requiring further segmentation, the framework then delegates computation to a fine-grained model component. We apply the architecture to a cloud detection data set of complete Sentinel-2 multispectral images, approximately annotated for minimal false negatives in a land-use application. On this specific task and data, we achieve a 16% relative improvement in pixel accuracy over a CNN baseline based on patching. Numéro de notice : A2021-425 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3015272 Date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3015272 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97781
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 6 (June 2021) . - pp[article]