Détail de l'auteur
Auteur Xuan Ding |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Towards generating network of bikeways from Mapillary data / Xuan Ding in Computers, Environment and Urban Systems, vol 88 (July 2021)
[article]
Titre : Towards generating network of bikeways from Mapillary data Type de document : Article/Communication Auteurs : Xuan Ding, Auteur ; Hongchao Fan, Auteur ; Jianya Gong, Auteur Année de publication : 2021 Article en page(s) : n° 101632 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] cycliste
[Termes IGN] données localisées des bénévoles
[Termes IGN] gestion des itinéraires
[Termes IGN] Mapillary
[Termes IGN] OpenStreetMap
[Termes IGN] Suède
[Termes IGN] système d'information géographiqueRésumé : (auteur) Nowadays, biking is flourishing in many Western cities. While many roads are used for both cars and bicycles, buffered bike lanes are marked for the safety of cyclists. In many cities, segregated paths are built up to have physical separation from motor vehicles. These types of biking ways are regarded as attributes in geographic information system (GIS) data. This information is required and important in the service of route planning, as cyclists may prefer certain types of bikeways. This paper presents a framework for generating networks of bikeways with attribute information from the data collected on the collaborative street view data platform Mapillary. The framework consists of two layers: The first layer focuses on constructing a bikeway road network using Global Positioning System (GPS) information of Mapillary images. Mapillary sequences are classified into walking, cycling, driving (ordinary road), and driving (motorway) trajectories based on the transportation mode with a trained XGBoost classifier. The bikeway road network is then extracted from cycling and driving (ordinary road) trajectories using a raster-based method. The second layer focuses on extracting attribute information from Mapillary images. Cycling-specific information (i.e., bicycle signs/markings) is extracted using a two-stage detection and classification model. A series of quantitative evaluations based on a case study demonstrated the ability and potential of the framework for extracting bikeway road information to enrich the existing OSM cycling road data. Numéro de notice : A2021-432 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2021.101632 Date de publication en ligne : 17/04/2021 En ligne : https://doi.org/10.1016/j.compenvurbsys.2021.101632 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97798
in Computers, Environment and Urban Systems > vol 88 (July 2021) . - n° 101632[article]