Détail de l'auteur
Auteur Yuejun Guo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A scalable method to construct compact road networks from GPS trajectories / Yuejun Guo in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : A scalable method to construct compact road networks from GPS trajectories Type de document : Article/Communication Auteurs : Yuejun Guo, Auteur ; Anton Bardera, Auteur ; Marta Fort, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1309 - 1345 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] chevauchement
[Termes IGN] compensation par faisceaux
[Termes IGN] contour
[Termes IGN] généralisation automatique de données
[Termes IGN] méthode heuristique
[Termes IGN] noeud
[Termes IGN] réseau routier
[Termes IGN] segmentation par décomposition-fusion
[Termes IGN] squelettisation
[Termes IGN] trajectographie par GPS
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The automatic generation of road networks from GPS tracks is a challenging problem that has been receiving considerable attention in the last years. Although dozens of methods have been proposed, current techniques suffer from two main shortcomings: the quality of the produced road networks is still far from those produced manually, and the methods are slow, making them not scalable to large inputs. In this paper, we present a fast four-step density-based approach to construct a road network from a set of trajectories. A key aspect of our method is the use of an improved version of the Slide method to adjust trajectories to build a more compact density surface. The network has comparable or better quality than that of state-of-the-art methods and is simpler (includes fewer nodes and edges). Furthermore, we also propose a split-and-merge strategy that allows splitting the data domain into smaller regions that can be processed independently, making the method scalable to large inputs. The performance of our method is evaluated with extensive experiments on urban and hiking data. Numéro de notice : A2021-447 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1832229 Date de publication en ligne : 16/10/2020 En ligne : https://doi.org/10.1080/13658816.2020.1832229 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97859
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1309 - 1345[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible