Détail de l'auteur
Auteur Qingying Yu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using information entropy and a multi-layer neural network with trajectory data to identify transportation modes / Qingying Yu in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : Using information entropy and a multi-layer neural network with trajectory data to identify transportation modes Type de document : Article/Communication Auteurs : Qingying Yu, Auteur ; Yonglong Luo, Auteur ; Dongxia Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1346 - 1373 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] direction
[Termes IGN] données spatiotemporelles
[Termes IGN] entropie
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] mobilité urbaine
[Termes IGN] Pékin (Chine)
[Termes IGN] plan de déplacement urbain
[Termes IGN] reconstruction d'itinéraire ou de trajectoire
[Termes IGN] segmentation
[Termes IGN] trajet (mobilité)
[Termes IGN] vitesse de déplacementRésumé : (auteur) Residents’ trajectory data denote their instantaneous locations along their movements. Mobility research that applies trajectory mining techniques to identify the transportation modes of these movements can inform urban transportation planning. Herein, we propose a five-step approach with information entropy and a multi-layer neural network to identify transportation modes from trajectory data. First, this approach extracts the motion features at each time-stamped location based on foundation geospatial data and spatiotemporal trajectory data, including the speed, acceleration, change of direction, rate of change in direction, and distance from each basic transportation facility. The second step uses information entropy to identify the features that play key roles in identifying transportation modes. The third step weighs each attribute in the feature vector consisting of the selected features and normalizes it to prepare it as input data. The fourth step constructs, trains, and tests a multi-layer neural network with seven-fold cross-validation. The final step includes a post-processing method to optimize the identification result. We use F-measure metric to evaluate the performance. Experimental results on a real trajectory dataset show that the proposed approach can identify the transportation mode at each time-stamped location and outperforms existing transportation-mode identification methods in terms of accuracy and stability. Numéro de notice : A2021-448 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1901904 Date de publication en ligne : 15/04/2021 En ligne : https://doi.org/10.1080/13658816.2021.1901904 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97860
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1346 - 1373[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible