Détail de l'auteur
Auteur Qingqing Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Identifying home locations in human mobility data: an open-source R package for comparison and reproducibility / Qingqing Chen in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
[article]
Titre : Identifying home locations in human mobility data: an open-source R package for comparison and reproducibility Type de document : Article/Communication Auteurs : Qingqing Chen, Auteur ; Ate Poorthuis, Auteur Année de publication : 2021 Article en page(s) : pp 1425 - 1448 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] géopositionnement
[Termes IGN] logement
[Termes IGN] mobilité urbaine
[Termes IGN] R (langage)
[Termes IGN] service fondé sur la position
[Termes IGN] SingapourRésumé : (auteur) Identifying meaningful locations, such as home or work, from human mobility data has become an increasingly common prerequisite for geographic research. Although location-based services (LBS) and other mobile technology have rapidly grown in recent years, it can be challenging to infer meaningful places from such data, which – compared to conventional datasets – can be devoid of context. Existing approaches are often developed ad-hoc and can lack transparency and reproducibility. To address this, we introduce an R package for inferring home locations from LBS data. The package implements pre-existing algorithms and provides building blocks to make writing algorithmic ‘recipes’ more convenient. We evaluate this approach by analyzing a de-identified LBS dataset from Singapore that aims to balance ethics and privacy with the research goal of identifying meaningful locations. We show that ensemble approaches, combining multiple algorithms, can be especially valuable in this regard as the resulting patterns of inferred home locations closely correlate with the distribution of residential population. We hope this package, and others like it, will contribute to an increase in use and sharing of comparable algorithms, research code and data. This will increase transparency and reproducibility in mobility analyses and further the ongoing discourse around ethical big data research. Numéro de notice : A2021-449 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1887489 Date de publication en ligne : 10/03/2021 En ligne : https://doi.org/10.1080/13658816.2021.1887489 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97861
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1425 - 1448[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible