Détail de l'auteur
Auteur Liyun Qin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Lightweight convolutional neural network-based pedestrian detection and re-identification in multiple scenarios / Xiao Ke in Machine Vision and Applications, vol 32 n° 2 (March 2021)
[article]
Titre : Lightweight convolutional neural network-based pedestrian detection and re-identification in multiple scenarios Type de document : Article/Communication Auteurs : Xiao Ke, Auteur ; Xinru Lin, Auteur ; Liyun Qin, Auteur Année de publication : 2021 Article en page(s) : n° 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] comportement
[Termes IGN] détection de piéton
[Termes IGN] objet mobile
[Termes IGN] reconnaissance de formes
[Termes IGN] vision par ordinateurRésumé : (auteur) Pedestrian detection and re-identification technology is a research hotspot in the field of computer vision. This technology currently has issues such as insufficient pedestrian expression ability, occlusion, diverse pedestrian attitude, and difficulty of small-scale pedestrian detection. In this paper, we proposed an end-to-end pedestrian detection and re-identification model in real scenes, which can effectively solve these problems. In our model, the original images are processed with a non-overlapped image blocking data augmentation method, and then input them into the YOLOv3 detector to obtain the object position information. LCNN-based pedestrian re-identification model is used to extract the features of the object. Furthermore, the eigenvectors of the object and the detected pedestrians are calculated, and the similarity between them are used to determine whether they can be marked as target pedestrians. Our method is lightweight and end-to-end, which can be applied to the real scenes. Numéro de notice : A2021-455 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00138-021-01169-7 Date de publication en ligne : 24/02/2021 En ligne : https://doi.org/10.1007/s00138-021-01169-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97900
in Machine Vision and Applications > vol 32 n° 2 (March 2021) . - n° 46[article]