Détail de l'auteur
Auteur Guillaume-Alexandre Bilodeau |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multiple convolutional features in Siamese networks for object tracking / Zhenxi Li in Machine Vision and Applications, vol 32 n° 3 (May 2021)
[article]
Titre : Multiple convolutional features in Siamese networks for object tracking Type de document : Article/Communication Auteurs : Zhenxi Li, Auteur ; Guillaume-Alexandre Bilodeau, Auteur ; Wassim Bouachir, Auteur Année de publication : 2021 Article en page(s) : n° 59 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] approche hiérarchique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] poursuite de cible
[Termes IGN] reconnaissance d'objets
[Termes IGN] réseau neuronal siamoisRésumé : (auteur) Siamese trackers demonstrated high performance in object tracking due to their balance between accuracy and speed. Unlike classification-based CNNs, deep similarity networks are specifically designed to address the image similarity problem and thus are inherently more appropriate for the tracking task. However, Siamese trackers mainly use the last convolutional layers for similarity analysis and target search, which restricts their performance. In this paper, we argue that using a single convolutional layer as feature representation is not an optimal choice in a deep similarity framework. We present a Multiple Features-Siamese Tracker (MFST), a novel tracking algorithm exploiting several hierarchical feature maps for robust tracking. Since convolutional layers provide several abstraction levels in characterizing an object, fusing hierarchical features allows to obtain a richer and more efficient representation of the target. Moreover, we handle the target appearance variations by calibrating the deep features extracted from two different CNN models. Based on this advanced feature representation, our method achieves high tracking accuracy, while outperforming the standard siamese tracker on object tracking benchmarks. The source code and trained models are available at https://github.com/zhenxili96/MFST. Numéro de notice : A2021-470 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00138-021-01185-7 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1007/s00138-021-01185-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97903
in Machine Vision and Applications > vol 32 n° 3 (May 2021) . - n° 59[article]