Détail de l'auteur
Auteur Nagihan Aslan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat imageries / Nagihan Aslan in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
[article]
Titre : The use of land cover indices for rapid surface urban heat island detection from multi-temporal Landsat imageries Type de document : Article/Communication Auteurs : Nagihan Aslan, Auteur ; Dilek Koc-San, Auteur Année de publication : 2021 Article en page(s) : n° 416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] image proche infrarouge
[Termes IGN] Normalized Difference Built-up Index
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Normalized Difference Water Index
[Termes IGN] occupation du sol
[Termes IGN] Soil Adjusted Vegetation Index
[Termes IGN] température au sol
[Termes IGN] Turquie
[Termes IGN] utilisation du solRésumé : (auteur) The aims of this study were to determine surface urban heat island (SUHI) effects and to analyze the land use/land cover (LULC) and land surface temperature (LST) changes for 11 time periods from the years 2002 to 2020 using Landsat time series images. Bursa, which is the fourth largest metropolitan city in Turkey, was selected as the study area, and Landsat multi-temporal images of the summer season were used. Firstly, the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), modified normalized difference water index (MNDWI) and index-based built-up index (IBI) were created using the bands of Landsat images, and LULC classes were determined by applying automatic thresholding. The LST values were calculated using thermal images and SUHI effects were determined. The results show that NDVI, SAVI, MNDWI and IBI indices can be used effectively for the determination of the urban, vegetation and water LULC classes for SUHI studies, with overall classification accuracies between 89.60% and 95.90% for the used images. According to the obtained results, generally the LST values increased for almost all land cover areas between the years 2002 and 2020. The SUHI magnitudes were computed by using two methods, and it was found that there was an important increase in the 18-year time period. Numéro de notice : A2021-516 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10060416 Date de publication en ligne : 16/06/2021 En ligne : https://doi.org/10.3390/ijgi10060416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97936
in ISPRS International journal of geo-information > vol 10 n° 6 (June 2021) . - n° 416[article]