Détail de l'auteur
Auteur Danyang Qin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Research on feature extraction method of indoor visual positioning image based on area division of foreground and background / Ping Zheng in ISPRS International journal of geo-information, vol 10 n° 6 (June 2021)
[article]
Titre : Research on feature extraction method of indoor visual positioning image based on area division of foreground and background Type de document : Article/Communication Auteurs : Ping Zheng, Auteur ; Danyang Qin, Auteur ; Bing Han, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 402 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] corrélation à l'aide de traits caractéristiques
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] logiciel libre
[Termes IGN] positionnement en intérieur
[Termes IGN] Ransac (algorithme)
[Termes IGN] SIFT (algorithme)
[Termes IGN] SURF (algorithme)Résumé : (auteur) In the process of indoor visual positioning and navigation, difficult points often exist in corridors, stairwells, and other scenes that contain large areas of white walls, strong consistent background, and sparse feature points. Aiming at the problem of positioning and navigation in the real physical world where the walls with sparse feature points are difficult to be filled with pictures, this paper designs a feature extraction method, ARAC (Adaptive Region Adjustment based on Consistency) using Free and Open-Source Software and tools. It divides the image into foreground and background and extracts their features respectively, to achieve not only retain positioning information but also focus more energy on the foreground area which is favourable for navigation. In the test phase, under the combined conditions of illumination, scale and affine changes, the feature matching maps by the feature extraction algorithm proposed in this paper are compared with those by SIFT and SURF. Experiments show that the number of correctly matched feature pairs obtained by ARAC is better than SIFT and SURF, and whose time of feature extraction and matching is comparable to SURF, which verifies the accuracy and efficiency of the ARAC feature extraction method. Numéro de notice : A2021-518 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/ijgi10060402 Date de publication en ligne : 11/06/2021 En ligne : https://doi.org/10.3390/ijgi10060402 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97940
in ISPRS International journal of geo-information > vol 10 n° 6 (June 2021) . - n° 402[article]