Détail de l'auteur
Auteur Rahima Djahel
Commentaire :
PhD student at LIGM (ENPC), co-directed by Pascal Monasse and Bruno Vallet
Autorités liées :
idHAL :
pas d'identifiant
idRef :
autre URL :
ORCID :
Scopus :
DBLP URL :
|
Documents disponibles écrits par cet auteur (4)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : A 3D segments based algorithm for heterogeneous data registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Pascal Monasse, Auteur ; Bruno Vallet , Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 129 - 136 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] algorithme du recuit simulé
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] orthoimage
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D
[Termes IGN] segment de droite
[Termes IGN] superposition de donnéesRésumé : (auteur) Combining image and LiDAR draws increasing interest in surface reconstruction, city and building modeling for constructing 3D virtual reality models because of their complementary nature. However, to gain from this complementarity, these data sources must be precisely registered. In this paper, we propose a new primitive based registration algorithm that takes 3D segments as features. The objective of the proposed algorithm is to register heterogeneous data. The heterogeneity is both in data type (image and LiDAR) and acquisition platform (terrestrial and aerial). Our algorithm starts by extracting 3D segments from LiDAR and image data with state of the art algorithms. Then it clusters the 3D segments of each data according to their directions. The obtained clusters are associated to find possible rotations, then 3D segments from associated clusters are matched in order to find the translation and scale factor minimizing a distance criteria between the two sets of 3D segments. Two optimizers (simulated annealing and RANSAC) are tested to minimize this distance criterion, first on synthetic data, then on real data. The experiments carried out demonstrate the robustness and speed of RANSAC compared to simulated annealing. Numéro de notice : C2022-018 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-129-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-129-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100844
Titre : Detecting openings for indoor/outdoor registration Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur Editeur : International Society for Photogrammetry and Remote Sensing ISPRS Année de publication : 2022 Collection : International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, ISSN 1682-1750 num. 43-B1 Projets : 1-Pas de projet / Conférence : ISPRS 2022, Commission 1, 24th ISPRS international congress, Imaging today, foreseeing tomorrow 06/06/2022 11/06/2022 Nice France OA ISPRS Archives Importance : pp 177 - 184 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] lancer de rayons
[Termes IGN] ouverture (bâtiment)
[Termes IGN] Ransac (algorithme)
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] segment de droite
[Termes IGN] semis de points
[Termes IGN] superposition de donnéesRésumé : (auteur) Indoor/Outdoor modeling of buildings is an important issue in the field of building life cycle management. It is seen as a joint process where the two aspects collaborate to take advantage of their semantic and geometric complementary. This global approach will allow a more complete, correct, precise and coherent reconstruction of the buildings. The first issue of such modeling is thus to precisely register this data. The lack of overlap between indoor and outdoor data is the most encountered obstacle, more so when both data sets are acquired separately and using different types of sensors. As an opening in the façade is the unique common entity that can be seen from inside and outside, it can help the registration of indoor and outdoor point clouds. So it must be automatically, accurately and efficiently extracted. In this paper, we start by proposing a very efficient algorithm to detect openings with great precision in both indoor and outdoor scans. Afterwards, we integrate them in a registration framework. As an opening is defined by a rectangular shape composed of four segments, two horizontal and two vertical, we can write our registration problem as a minimization of a global robust distance between two segment sets and propose a robust approach to minimize this distance using the RANSAC paradigm. Numéro de notice : C2022-023 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/isprs-archives-XLIII-B1-2022-177-2022 Date de publication en ligne : 30/05/2022 En ligne : http://dx.doi.org/10.5194/isprs-archives-XLIII-B1-2022-177-2022 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100849
Titre : Registration of heterogenous data for urban modeling Type de document : Thèse/HDR Auteurs : Rahima Djahel, Auteur ; Pascal Monasse, Directeur de thèse ; Bruno Vallet , Directeur de thèse Editeur : Champs-sur-Marne : Ecole des Ponts ParisTech Année de publication : 2022 Projets : BIOM / Vallet, Bruno Importance : 160 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse soutenue pour obtenir le grade de Docteur à l'École des Ponts ParisTech, spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données hétérogènes
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace intérieur
[Termes IGN] état de l'art
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données localisées
[Termes IGN] méthode robuste
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] primitive géométrique
[Termes IGN] Ransac (algorithme)
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segment de droiteIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Cette thèse fait partie du projet Modelisation Intérieur/Extérieur de Bâtiments (BIOM) qui vise à la modélisation automatique et simultanée de l’intérieur et de l’extérieur de bâtiments à partir de données hétérogènes. L'hétérogénéité est à la fois dans le type de données (image et Light Detection and Ranging (LiDAR)) et la plate-forme d'acquisition: acquisition terrestre intérieure/extérieure ou aérienne. Le premier enjeu d'une telle modélisation est donc de recaler précisément ces données. Les travaux menés ont confirmé que l'environnement et le type de données conditionnent le choix de l'algorithme de recalage. Notre contribution consiste à exploiter les propriétés fondamentales des données et des plateformes d'acquisition afin de proposer des solutions potentielles à tous les problèmes de recalage rencontrés par le projet. Comme dans un environnement de bâtiments la plupart des objets sont composés de primitives géométriques (polygones planaires, lignes droites, ouvertures), nous avons choisi d'introduire des algorithmes de recalage reposant sur ces primitives. L'idée de base de ces algorithmes consiste en la définition d'une énergie globale entre les primitives extraites à partir des jeux de données à recaler et la proposition d'une méthode robuste pour optimiser cette énergie basée sur le paradigme RANSAC. Notre contribution va de la proposition de méthodes robustes pour extraire les primitives sélectionnées à l'intégration de ces primitives dans un cadre de recalage efficace. Nos solutions ont dépassé les limites des algorithmes existants et ont prouvé leur efficacité pour résoudre les problèmes rencontrés par le projet, tels que le recalage intérieur/extérieur, le recalage d'image/LiDAR et le recalage aérien/terrestre. Note de contenu : 1. Context and research problem
1.1 Introduction
1.2 BIOM project
1.3 Objectives
1.4 Building Information Modeling
1.5 Registration problem
1.6 Images registration
1.7 Point clouds registration
1.8 Contributions
1.9 Thesis outline
1.10 Publication List
2. Data description
2.1 Introduction
2.2 Image data
2.3 LiDAR data
2.4 Conclusion
3. Primitives detection
3.1 Introduction
3.2 Classification of primitives extraction methods
3.3 Performance evaluation
3.4 Planar polygons extraction
3.5 3D line segment detection from LIDAR data
3.6 3D lines segments detection and reconstruction from image data
3.7 Openings detection
3.8 Conclusion
4. Indoor/Outdoor Registration
4.1 Introduction
4.2 State of the art
4.3 Data
4.4 Planar polygons based registration
4.5 Openings based registration
4.6 Hybrid solution
4.7 Conclusion
5. Image/LiDAR data Registration 104
5.1 Introduction
5.2 State of the art
5.3 Overview and contributions
5.4 3D Segment Extraction
5.5 3D segments based registration
5.6 Iterative Closest Line (ICL)
5.7 Evaluation and discussion
5.8 Conclusion
6. Aerial/Terrestrial registration
6.1 Introduction
6.2 State of the art
6.3 3D segment extraction from heterogeneous image data
6.4 3D segments based algorithm adaptation
6.5 Evaluation and discussion
6.6 Conclusion
7. Conclusion
7.1 Contributions
7.2 Future work
Appendices
A. Implementation
B. MLSD ImprovementNuméro de notice : 26842 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : ENPC : 2022 Organisme de stage : Laboratoire d'Informatique Gaspard-Monge LIGM nature-HAL : Thèse DOI : sans Date de publication en ligne : 30/08/2022 En ligne : https://pastel.hal.science/tel-03764907/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101526 Towards efficient indoor/outdoor registration using planar polygons / Rahima Djahel in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Towards efficient indoor/outdoor registration using planar polygons Type de document : Article/Communication Auteurs : Rahima Djahel, Auteur ; Bruno Vallet , Auteur ; Pascal Monasse, Auteur Année de publication : 2021 Projets : BIOM / Vallet, Bruno Article en page(s) : pp 51 - 58 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] appariement de primitives
[Termes IGN] bati
[Termes IGN] détection de contours
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de points
[Termes IGN] géométrie euclidienne
[Termes IGN] polygone
[Termes IGN] scène intérieure
[Termes IGN] scène urbaine
[Termes IGN] superposition de donnéesRésumé : (auteur) The registration of indoor and outdoor scans with a precision reaching the level of geometric noise represents a major challenge for Indoor/Outdoor building modeling. The basic idea of the contribution presented in this paper consists in extracting planar polygons from indoor and outdoor LiDAR scans, and then matching them. In order to cope with the very small overlap between indoor and outdoor scans of the same building, we propose to start by extracting points lying in the buildings’ interior from the outdoor scans as points where the laser ray crosses detected façades. Since, within a building environment, most of the objects are bounded by a planar surface, we propose a new registration algorithm that matches planar polygons by clustering polygons according to their normal direction, then by their offset in the normal direction. We use this clustering to find possible polygon correspondences (hypotheses) and estimate the optimal transformation for each hypothesis. Finally, a quality criteria is computed for each hypothesis in order to select the best one. To demonstrate the accuracy of our algorithm, we tested it on real data with a static indoor acquisition and a dynamic (Mobile Laser Scanning) outdoor acquisition. Numéro de notice : A2021-490 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-51-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-51-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97955
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 51 - 58[article]