Détail de l'auteur
Auteur Genki Takahashi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Roadside tree extraction and diameter estimation with MMS lidar by using point-cloud image / Genki Takahashi in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Roadside tree extraction and diameter estimation with MMS lidar by using point-cloud image Type de document : Article/Communication Auteurs : Genki Takahashi, Auteur ; H. Masuda, Auteur Année de publication : 2021 Article en page(s) : pp 67 - 74 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] alignement d'arbres
[Termes IGN] apprentissage automatique
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction d'arbres
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] route
[Termes IGN] semis de points
[Termes IGN] Tokyo (Japon)
[Termes IGN] zone urbaineRésumé : (auteur) Efficient management of roadside trees for local governments is important. Mobile Mapping System (MMS) equipped with a high-density LiDAR scanner has the possibility to be applied to estimate DBH of roadside trees using point clouds. In this study, we propose a method for detecting roadside trees and estimating their DBHs automatically from MMS point clouds. In our method, point clouds captured using the MMS are mapped on a 2D image plane, and they are converted into a wireframe model by connecting adjacent points. Then, geometric features are calculated for each point in the wireframe model. Tree points are detected using a machine learning technique. The DBH of each tree is calculated using vertically aligned circles extracted from the wireframe model. Our method allows robustly calculating the DBH even if there is a hump at breast height. We evaluated our method using actual MMS data measured in an urban area in Tokyo. Our method achieved a high extraction performance of 100 percent of precision and 95.1 percent of recall for 102 roadside trees. The average accuracy of the DBH was 2.0 cm. These results indicate that our method is useful for the efficient management of roadside trees. Numéro de notice : A2021-491 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2021-67-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-2-2021-67-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97956
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 67 - 74[article]