Détail de l'auteur
Auteur J. Picos |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Forest cover mapping and Pinus species classification using very high-resolution satellite images and random forest / Laura Alonso-Martinez in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2021 (July 2021)
[article]
Titre : Forest cover mapping and Pinus species classification using very high-resolution satellite images and random forest Type de document : Article/Communication Auteurs : Laura Alonso-Martinez, Auteur ; J. Picos, Auteur ; Julia Armesto, Auteur Année de publication : 2021 Article en page(s) : pp 203 - 210 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] couvert forestier
[Termes IGN] Espagne
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Pinus pinaster
[Termes IGN] Pinus radiata
[Termes IGN] Pinus sylvestris
[Termes IGN] ressources forestières
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Advances in remote sensing technologies are generating new perspectives concerning the role of and methods used for National Forestry Inventories (NFIs). The increase in computation capabilities over the last several decades and the development of new statistical techniques have allowed for the automation of forest resource map generation through image analysis techniques and machine learning algorithms. The availability of large-scale data and the high temporal resolution that satellite platforms provide mean that it is possible to obtain updated information about forest resources at the stand level, thus increasing the quality of the spatial information. However, photointerpretation of satellite and aerial images is still the most common way that remote sensing information is used for NFIs or forest management purposes. This study describes a methodology that automatically maps the main forest covers in Galicia (Eucalyptus spp., conifers and broadleaves) using Worldview-2 and the random forest classifier. Furthermore, the method also evaluates the separate mapping of the three most abundant Pinus tree species in Galicia (Pinus pinaster, Pinus radiata and Pinus sylvestris). According to the results, Worldview-2 multispectral images allow for the efficient differentiation between the main forest classes that are present in Galicia with a very high degree of accuracy (91%) and ample spatial detail. Pinus species can also be efficiently differentiated (83%). Numéro de notice : A2021-493 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-V-3-2021-203-2021 Date de publication en ligne : 17/06/2021 En ligne : http://dx.doi.org/10.5194/isprs-annals-V-3-2021-203-2021 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97958
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol V-2-2021 (July 2021) . - pp 203 - 210[article]