Détail de l'auteur
Auteur Dominique Barth |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Machine learning for the distributed and dynamic management of a fleet of taxis and autonomous shuttles / Tatiana Babicheva (2021)
Titre : Machine learning for the distributed and dynamic management of a fleet of taxis and autonomous shuttles Titre original : Machine Learning pour la gestion distribuée et dynamique d’une flotte de taxis et navettes autonomes Type de document : Thèse/HDR Auteurs : Tatiana Babicheva, Auteur ; Leïla Kloul, Directeur de thèse ; Dominique Barth, Directeur de thèse Editeur : Bures-sur-Yvette : Université Paris-Saclay Année de publication : 2021 Importance : 190 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l'Université Paris-Saclay, InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage par renforcement
[Termes IGN] autopartage
[Termes IGN] calcul d'itinéraire
[Termes IGN] méthode heuristique
[Termes IGN] navigation autonome
[Termes IGN] OpenStreetMap
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau neuronal artificiel
[Termes IGN] réseau routier
[Termes IGN] taxi
[Termes IGN] trafic routier
[Termes IGN] trafic urbain
[Termes IGN] véhicule électrique
[Termes IGN] ville intelligenteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In this thesis are investigated methods to manage shared electric autonomous taxi urban systems under online context in which customer demands occur over time, and where vehicles are available for ride-sharing and require electric recharging management. We propose the heuristics based on problem decomposition which include road network repartition and highlighting of subproblems such as charging management, empty vehicle redistribution and dynamic ride-sharing.The set of new methods for empty vehicle redistribution is proposed, such as proactive, meaning to take into account both current demand and anticipated future demand, in contrast to reactive methods, which act based on current demand only.We provide the reinforcement learning in different levels depending on granularity of the system.We propose station-based RL model for small networks and zone-based RL model, where the agents are zones of the city obtained by partitioning, for huge ones. The complete information optimisation is provided in order to analyse the system performance a-posteriori in offline context.The evaluation of the performance of proposed methods is provided in set of road networks of different nature and size. The proposed method provides promising results outperforming the other tested methods and the real data on the taxi system performance in terms of number of satisfied passengers under fixed fleet size. Note de contenu : 1- Introduction
2- State-of-the-art
3- Modelling the electrical aTaxisystem
4- Functional architecture of aTaxi system management
5- Reinforcement learning for aTaxi system optimisation
6- Evaluation scenarii
7- Numerical evaluation of aTaxi systems
8- Conclusion and discussionNuméro de notice : 28591 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de Doctorat : Informatique : Paris-Saclay : 2021 Organisme de stage : Données et Algorithmes pour une ville intelligente et durable (UVSQ) DOI : sans En ligne : https://tel.hal.science/tel-03230845/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97968