Détail de l'auteur
Auteur Andrea Meraner |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery / Patrick Ebel in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
[article]
Titre : Multisensor data fusion for cloud removal in global and all-season Sentinel-2 imagery Type de document : Article/Communication Auteurs : Patrick Ebel, Auteur ; Andrea Meraner, Auteur ; Michael Schmitt, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 5866 - 5878 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection des nuages
[Termes IGN] données multicapteurs
[Termes IGN] image Sentinel-MSI
[Termes IGN] nuage
[Termes IGN] reconstruction d'image
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) The majority of optical observations acquired via spaceborne Earth imagery are affected by clouds. While there is numerous prior work on reconstructing cloud-covered information, previous studies are, oftentimes, confined to narrowly defined regions of interest, raising the question of whether an approach can generalize to a diverse set of observations acquired at variable cloud coverage or in different regions and seasons. We target the challenge of generalization by curating a large novel data set for training new cloud removal approaches and evaluate two recently proposed performance metrics of image quality and diversity. Our data set is the first publically available to contain a global sample of coregistered radar and optical observations, cloudy and cloud-free. Based on the observation that cloud coverage varies widely between clear skies and absolute coverage, we propose a novel model that can deal with either extreme and evaluate its performance on our proposed data set. Finally, we demonstrate the superiority of training models on real over synthetic data, underlining the need for a carefully curated data set of real observations. To facilitate future research, our data set is made available online. Numéro de notice : A2021-529 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3024744 Date de publication en ligne : 02/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3024744 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97980
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 7 (July 2021) . - pp 5866 - 5878[article]