Détail de l'auteur
Auteur Giovanni Mariani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy / Florian Scheidegger in The Visual Computer, vol 37 n° 6 (June 2021)
[article]
Titre : Efficient image dataset classification difficulty estimation for predicting deep-learning accuracy Type de document : Article/Communication Auteurs : Florian Scheidegger, Auteur ; Roxana Istrate, Auteur ; Giovanni Mariani, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1593 - 1610 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] architecture de réseau
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distance de Fréchet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] jeu de données
[Termes IGN] précision de la classification
[Termes IGN] processeur graphiqueRésumé : (auteur) In the deep-learning community, new algorithms are published at a very fast pace. Therefore, solving an image classification problem for new datasets becomes a challenging task, as it requires to re-evaluate published algorithms and their different configurations in order to find a close to optimal classifier. To facilitate this process, before biasing our decision toward a class of neural networks or running an expensive search over the network space, we propose to estimate the classification difficulty of the dataset. Our method computes a single number that characterizes the dataset difficulty 97× faster than training state-of-the-art networks. The proposed method can be used in combination with network topology and hyper-parameter search optimizers to efficiently drive the search toward promising neural network configurations. Numéro de notice : A2021-533 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01922-5 Date de publication en ligne : 28/07/2020 En ligne : https://doi.org/10.1007/s00371-020-01922-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97993
in The Visual Computer > vol 37 n° 6 (June 2021) . - pp 1593 - 1610[article]