Détail de l'auteur
Auteur Xin Jin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)
[article]
Titre : Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space Type de document : Article/Communication Auteurs : Min Wu, Auteur ; Xin Jin, Auteur ; Qian Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1707 - 1729 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste de couleurs
[Termes IGN] données multiéchelles
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] niveau de gris (image)
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Image colorization technique is used to colorize the gray-level image or single-channel image, which is a very significant and challenging task in image processing, especially the colorization of remote sensing images. This paper proposes a new method for coloring remote sensing images based on deep convolution generation adversarial network. The adopted generator model is a symmetrical structure using the principle of auto-encoder, and a multi-scale convolutional module is specially designed to introduce into the generator model. Thus, the proposed generator can enable the whole model to retain more image features in the process of up-sampling and down-sampling. Meanwhile, the discriminator uses residual neural network 18 that can compete with the generator, so that the generator and discriminator can effectively optimize each other. In the proposed method, the color space transformation technique is first utilized to convert remote sensing images from RGB to YUV. Then, the Y channel (a gray-level image) is used as the input of the neural network model to predict UV channels. Finally, the predicted UV channels are concatenated with the original Y channel as a whole YUV that is then transformed into RGB space to get the final color image. Experiments are conducted to test the performance of different image colorization methods, and the results show that the proposed method has good performance in both visual quality and objective indexes on the colorization of remote sensing image. Numéro de notice : A2021-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01933-2 Date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s00371-020-01933-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98018
in The Visual Computer > vol 37 n° 7 (July 2021) . - pp 1707 - 1729[article]