Détail de l'auteur
Auteur Gina Schwendemann |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan / Dirk Tiede in Transactions in GIS, Vol 25 n° 3 (June 2021)
[article]
Titre : Mask R-CNN-based building extraction from VHR satellite data in operational humanitarian action: An example related to Covid-19 response in Khartoum, Sudan Type de document : Article/Communication Auteurs : Dirk Tiede, Auteur ; Gina Schwendemann, Auteur ; Ahmad Alobaidi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1213-1227 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] échantillonnage
[Termes IGN] épidémie
[Termes IGN] gestion de crise
[Termes IGN] HRV (capteur)
[Termes IGN] image à très haute résolution
[Termes IGN] image Pléiades-HR
[Termes IGN] itération
[Termes IGN] SoudanRésumé : Auteur) Within the constraints of operational work supporting humanitarian organizations in their response to the Covid-19 pandemic, we conducted building extraction for Khartoum, Sudan. We extracted approximately 1.2 million dwellings and buildings, using a Mask R-CNN deep learning approach from a Pléiades very high-resolution satellite image with 0.5 m pixel resolution. Starting from an untrained network, we digitized a few hundred samples and iteratively increased the number of samples by validating initial classification results and adding them to the sample collection. We were able to strike a balance between the need for timely information and the accuracy of the result by combining the output from three different models, each aiming at distinctive types of buildings, in a post-processing workflow. We obtained a recall of 0.78, precision of 0.77 and F1 score of 0.78, and were able to deliver first results in only 10 days after the initial request. The procedure shows the great potential of convolutional neural network frameworks in combination with GIS routines for dwelling extraction even in an operational setting. Numéro de notice : A2021-464 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12766 Date de publication en ligne : 06/05/2021 En ligne : https://doi.org/10.1111/tgis.12766 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98060
in Transactions in GIS > Vol 25 n° 3 (June 2021) . - pp 1213-1227[article]