Détail de l'auteur
Auteur Anthony Lyons |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning / Kim Lowell in International journal of geographical information science IJGIS, vol 35 n° 8 (August 2021)
[article]
Titre : Measuring shallow-water bathymetric signal strength in lidar point attribute data using machine learning Type de document : Article/Communication Auteurs : Kim Lowell, Auteur ; Brian Calder, Auteur ; Anthony Lyons, Auteur Année de publication : 2021 Article en page(s) : pp 1592 - 1610 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage automatique
[Termes IGN] bathymétrie laser
[Termes IGN] données lidar
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Floride (Etats-Unis)
[Termes IGN] hydrographie
[Termes IGN] lever bathymétrique
[Termes IGN] semis de pointsRésumé : (auteur) The goal of this work was to evaluate if routinely collected but seldom used airborne lidar metadata – ‘point attribute data’ (PAD) – analyzed using machine learning/artificial intelligence can improve extraction of shallow-water (less than 20 m) bathymetry from lidar point clouds. Extreme gradient boosting (XGB) models relating PAD to an existing bathymetry/not bathymetry classification were fitted and evaluated for four areas near the Florida Keys. The PAD examined include ‘pulse specific’ information such as the return intensity and PAD describing flight path consistency. The R2 values for the XGB models were between 0.34 and 0.74. Global classification accuracies were above 80% although this reflected a sometimes extreme Bathy/NotBathy imbalance that inflated global accuracy. This imbalance was mitigated by employing a probability decision threshold (PDT) that equalizes the true positive (Bathy) and true negative (NotBathy) rates. It was concluded that 1) the strength of the bathymetric signal in the PAD should be sufficient to increase accuracy of density-based lidar point cloud bathymetry extraction methods and 2) ML can successfully model the relationship between the PAD and the Bathy/NotBathy classification. A method is also presented to examine the spatial and feature-space distribution of errors that will facilitate quality assurance and continuous improvement. Numéro de notice : A2021-548 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1867147 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.1080/13658816.2020.1867147 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98061
in International journal of geographical information science IJGIS > vol 35 n° 8 (August 2021) . - pp 1592 - 1610[article]