Détail de l'auteur
Auteur Kristen Barrett |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Using remote sensing to assess the effect of time of day on the spatial and temporal variation of LST in urban areas / Akram Abdulla (2020)
Titre : Using remote sensing to assess the effect of time of day on the spatial and temporal variation of LST in urban areas Type de document : Thèse/HDR Auteurs : Akram Abdulla, Auteur ; Kevin Tansey, Directeur de thèse ; Kristen Barrett, Directeur de thèse Editeur : Leicester [Royaume-Uni] : University of Leicester Année de publication : 2020 Importance : 128 p. Format : 21 x 30 cm Note générale : bibliographie
Thesis submitted for the degree of Doctor of Philosophy at The University of Leicester, School of Geography, Geology and EnvironmentLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] données spatiotemporelles
[Termes IGN] ilot thermique urbain
[Termes IGN] image infrarouge
[Termes IGN] image Landsat
[Termes IGN] image Terra-MODIS
[Termes IGN] image thermique
[Termes IGN] occupation du sol
[Termes IGN] phénomène climatique extrême
[Termes IGN] température au sol
[Termes IGN] variation diurne
[Termes IGN] variation saisonnière
[Termes IGN] variation temporelle
[Termes IGN] zone urbaineIndex. décimale : THESE Thèses et HDR Résumé : (auteur) This thesis seeks to add to the study of the relationship between land surface temperature (LST) and urban land cover by presenting a method to project Landsat LST data from the satellite overpass time (9:40 am) to a local peak of temperature (estimated to be around 1:15 pm locally), to investigate the impact of the time of image acquisition on modelling the spatial and temporal variations of LST. Additionally, it would also verify the effects of extreme temperature to reach more representative seasonal images.The study uses remote sensing data extracted from Landsat 5 and 8 (30 m resolution) and the Spinning Enhanced Visible and Infrared Imager LST products (SEVIRI 3 km resolution), in addition to LST-based measurements collected from the ground. The study presented a method to convert Landsat images to be estimated during local peaks in LST with an accuracy of: standard error of 1.7°C and an R of 0.82 in comparison with actual ground-based measurements. This allowed an investigation of the effects of time of day on the spatial and temporal variation of LST, where it was found that this factor has clearly affected the relationship between LST and urban land cover. Similarly, the time of day has caused differences in estimating LST change over several years. It is also found that the extreme values of temperature can affect the trend of LST temporal variation, and which can be minimized by using the images in the form of the average of seasonal images for each year rather than images being used in a standalone manner. This study contributes to the improved study of LST by minimizing the uncertainty that can occur because of the angle of the sun and associated factors such as shadows, which has long been a controversial issue among researches due to the lack of appropriate satellite data. Note de contenu : 1- Introduction
2- Literature review
3- Study area
4- Converting Landsat LST data from morning to peak temperatures(9:40 am to 1:15 pm)
5- Assessing the effect of the time of day on the spatial variation of LST
6- Assessment and enhancement of the temporal variation of LST over a time series
7- General Discussion and ConclusionsNuméro de notice : 28304 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD thesis : Geography, Geology and Environment : University of Leicester : 2020 DOI : sans En ligne : https://doi.org/10.25392/leicester.data.14518848.v1 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98068