Détail de l'auteur
Auteur Kieu Anh Nguyen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
DEM- and GIS-based analysis of soil erosion depth using machine learning / Kieu Anh Nguyen in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
[article]
Titre : DEM- and GIS-based analysis of soil erosion depth using machine learning Type de document : Article/Communication Auteurs : Kieu Anh Nguyen, Auteur ; Walter Chen, Auteur Année de publication : 2021 Article en page(s) : n° 452 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage automatique
[Termes IGN] bassin hydrographique
[Termes IGN] carte de profondeur
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] érosion
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] morphométrie
[Termes IGN] système d'information géographiqueRésumé : (auteur) Soil erosion is a form of land degradation. It is the process of moving surface soil with the action of external forces such as wind or water. Tillage also causes soil erosion. As outlined by the United Nations Sustainable Development Goal (UN SDG) #15, it is a global challenge to “combat desertification, and halt and reverse land degradation and halt biodiversity loss.” In order to advance this goal, we studied and modeled the soil erosion depth of a typical watershed in Taiwan using 26 morphometric factors derived from a digital elevation model (DEM) and 10 environmental factors. Feature selection was performed using the Boruta algorithm to determine 15 factors with confirmed importance and one tentative factor. Then, machine learning models, including the random forest (RF) and gradient boosting machine (GBM), were used to create prediction models validated by erosion pin measurements. The results show that GBM, coupled with 15 important factors (confirmed), achieved the best result in the context of root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE). Finally, we present the maps of soil erosion depth using the two machine learning models. The maps are useful for conservation planning and mitigating future soil erosion. Numéro de notice : A2021-551 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070452 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.3390/ijgi10070452 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98074
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 452[article]