Détail de l'auteur
Auteur Yanyan Gao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-scale coal fire detection based on an improved active contour model from Landsat-8 satellite and UAV images / Yanyan Gao in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
[article]
Titre : Multi-scale coal fire detection based on an improved active contour model from Landsat-8 satellite and UAV images Type de document : Article/Communication Auteurs : Yanyan Gao, Auteur ; Ming Hao, Auteur ; Yunjia Wang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 449 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] charbon
[Termes IGN] classification floue
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection de contours
[Termes IGN] image captée par drone
[Termes IGN] image Landsat-8
[Termes IGN] incendie
[Termes IGN] Sinkiang (Chine)
[Termes IGN] température au solRésumé : (auteur) Underground coal fires can increase surface temperature, cause surface cracks and collapse, and release poisonous and harmful gases, which significantly harm the ecological environment and humans. Traditional methods of extracting coal fires, such as global threshold, K-mean and active contour model, usually produce many false alarms. Therefore, this paper proposes an improved active contour model by introducing the distinguishing energies of coal fires and others into the traditional active contour model. Taking Urumqi, Xinjiang, China as the research area, coal fires are detected from Landsat-8 satellite and unmanned aerial vehicle (UAV) data. The results show that the proposed method can eliminate many false alarms compared with some traditional methods, and achieve detection of small-area coal fires by referring field survey data. More importantly, the results obtained from UAV data can help identify not only burning coal fires but also potential underground coal fires. This paper provides an efficient method for high-precision coal fire detection and strong technical support for reducing environmental pollution and coal energy use. Numéro de notice : A2021-552 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070449 Date de publication en ligne : 30/06/2021 En ligne : https://doi.org/10.3390/ijgi10070449 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98084
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 449[article]