Détail de l'auteur
Auteur Joseph Mango |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Transform paper-based cadastral data into digital systems using GIS and end-to-end deep learning techniques / Joseph Mango in International journal of geographical information science IJGIS, vol 37 n° 5 (May 2023)
[article]
Titre : Transform paper-based cadastral data into digital systems using GIS and end-to-end deep learning techniques Type de document : Article/Communication Auteurs : Joseph Mango, Auteur ; Moyang Wang, Auteur ; Senlin Mu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 1099 - 1127 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cadastre
[Termes IGN] apprentissage profond
[Termes IGN] données cadastrales
[Termes IGN] numérisation du cadastre
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographiqueRésumé : (auteur) Digital systems storing cadastral data in vector format are considered effective due to their ability of offering interactive services to citizens and other land-related systems. The adoption of such systems is ubiquitous, but when adopted, they create two non-compatible systems with paper-based cadastral systems whose information needs to be digitised. This study proposes a new approach that is fast and accurate for transforming paper-based cadastral data into digital systems. The proposed method involves deep-learning techniques of the LCNN and ResNet-50 for detecting cadastral parcels and their numbers, respectively, from the cadastral plans. It also contains four functions defined to speed up transformations and compilations of the cadastral plan’s data in digital systems. The LCNN is trained and validated with 968 samples. The ResNet-50 is trained and validated with 106,000 samples. The Structural-Average-Precision (sAP10) achieved with the LCNN was 0.9057. The Precision, Recall and F1-Score achieved with the ResNet-50 were 0.9650, 0.9648 and 0.9649, respectively. These results confirmed that the new method is accurate enough for implementation, and we tested it with a huge set of data from Tanzania. Its performance from the experimented data shows that the proposed method could effectively transform paper-based cadastral data into digital systems. Numéro de notice : A2023-212 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/13658816.2023.2178002 Date de publication en ligne : 22/03/2023 En ligne : https://doi.org/10.1080/13658816.2023.2178002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103139
in International journal of geographical information science IJGIS > vol 37 n° 5 (May 2023) . - pp 1099 - 1127[article]Multipurpose temporal GIS model for cadastral data management / Joseph Mango in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
[article]
Titre : Multipurpose temporal GIS model for cadastral data management Type de document : Article/Communication Auteurs : Joseph Mango, Auteur ; Christophe Claramunt, Auteur ; Jamila Ngondo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1205 - 1230 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] données cadastrales
[Termes IGN] historique des données
[Termes IGN] outil d'aide à la décision
[Termes IGN] parcelle cadastrale
[Termes IGN] SIG temporel
[Termes IGN] système d'information foncière
[Termes IGN] Tanzanie
[Termes IGN] ZambieRésumé : (auteur) Past and current cadastral records are among the most valuable information that different countries need to solve land management and planning problems. However, many countries still face critical challenges in adopting modern temporal cadastral systems, including a sound integration of time constructs, efficient data integration and representation methods in the designed models. This research developed a new temporal GIS model to manage spatial and non-spatial temporal cadastral data, namely cadastral parcels, land-use and land-ownerships. Three-time dimensions defined by decision and valid and transaction times were formulated to qualify parcels data. A hybrid approach fusing on the Base State with Amendment and Space-Time Composite models is used to store significant parcel changes and their relationships in two interdependent sub-databases. We used administrative plot identifiers to associate with land use and ownership records, experiencing distinct temporal variations in the third sub-database within the same main repository. We experimented our model with data from Tanzania, and the results from queries demonstrate that the designed model can store all three temporal cadastral data and track their variations semantically and effectively. This model is very useful for storing cadastral parcels, reasons, events, and the transformed parcels’ values to improve decision-making processes. Numéro de notice : A2022-406 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2009483 Date de publication en ligne : 15/12/2022 En ligne : https://doi.org/10.1080/13658816.2021.2009483 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100719
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1205 - 1230[article]Simulating multi-exit evacuation using deep reinforcement learning / Dong Xu in Transactions in GIS, Vol 25 n° 3 (June 2021)
[article]
Titre : Simulating multi-exit evacuation using deep reinforcement learning Type de document : Article/Communication Auteurs : Dong Xu, Auteur ; Xiao Huang, Auteur ; Joseph Mango, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1542-1564 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse comparative
[Termes IGN] apprentissage par renforcement
[Termes IGN] distribution spatiale
[Termes IGN] itinéraire piétionnier
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal profondRésumé : (Auteur) Conventional simulations on multi-exit indoor evacuation focus primarily on how to determine a reasonable exit based on numerous factors in a changing environment. Results commonly include some congested and other under-utilized exits, especially with large numbers of pedestrians. We propose a multi-exit evacuation simulation based on deep reinforcement learning (DRL), referred to as the MultiExit-DRL, which involves a deep neural network (DNN) framework to facilitate state-to-action mapping. The DNN framework applies Rainbow Deep Q-Network (DQN), a DRL algorithm that integrates several advanced DQN methods, to improve data utilization and algorithm stability and further divides the action space into eight isometric directions for possible pedestrian choices. We compare MultiExit-DRL with two conventional multi-exit evacuation simulation models in three separate scenarios: varying pedestrian distribution ratios; varying exit width ratios; and varying open schedules for an exit. The results show that MultiExit-DRL presents great learning efficiency while reducing the total number of evacuation frames in all designed experiments. In addition, the integration of DRL allows pedestrians to explore other potential exits and helps determine optimal directions, leading to a high efficiency of exit utilization. Numéro de notice : A2021-466 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Numéro de périodique nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12738 Date de publication en ligne : 11/03/2021 En ligne : https://doi.org/10.1111/tgis.12738 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98085
in Transactions in GIS > Vol 25 n° 3 (June 2021) . - pp 1542-1564[article]