Détail de l'auteur
Auteur Lucia Fitts |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Modeling land use change and forest carbon stock changes in temperate forests in the United States / Lucia Fitts in Carbon Balance and Management, vol 16 ([01/02/2021])
[article]
Titre : Modeling land use change and forest carbon stock changes in temperate forests in the United States Type de document : Article/Communication Auteurs : Lucia Fitts, Auteur ; Matthew B. Russell, Auteur ; Grant M. Domke, Auteur ; Joseph F. Knight, Auteur Année de publication : 2021 Article en page(s) : n° 20 (2021) Langues : Anglais (eng) Descripteur : [Termes IGN] changement d'occupation du sol
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] forêt tempérée
[Termes IGN] Géorgie (Etats-Unis)
[Termes IGN] impact sur l'environnement
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] New York (Etats-Unis ; état)
[Termes IGN] puits de carbone
[Termes IGN] Texas (Etats-Unis)
[Termes IGN] Wisconsin (Etats-Unis)
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Background : Forests provide the largest terrestrial sink of carbon (C). However, these C stocks are threatened by forest land conversion. Land use change has global impacts and is a critical component when studying C fluxes, but it is not always fully considered in C accounting despite being a major contributor to emissions. An urgent need exists among decision-makers to identify the likelihood of forest conversion to other land uses and factors affecting C loss. To help address this issue, we conducted our research in California, Colorado, Georgia, New York, Texas, and Wisconsin. The objectives were to (1) model the probability of forest conversion and C stocks dynamics using USDA Forest Service Forest Inventory and Analysis (FIA) data and (2) create wall-to-wall maps showing estimates of the risk of areas to convert from forest to non-forest. We used two modeling approaches: a machine learning algorithm (random forest) and generalized mixed-effects models. Explanatory variables for the models included ecological attributes, topography, census data, forest disturbances, and forest conditions. Model predictions and Landsat spectral information were used to produce wall-to-wall probability maps of forest change using Google Earth Engine.
Results : During the study period (2000–2017), 3.4% of the analyzed FIA plots transitioned from forest to mixed or non-forested conditions. Results indicate that the change in land use from forests is more likely with increasing human population and housing growth rates. Furthermore, non-public forests showed a higher probability of forest change compared to public forests. Areas closer to cities and coastal areas showed a higher risk of transition to non-forests. Out of the six states analyzed, Colorado had the highest risk of conversion and the largest amount of aboveground C lost. Natural forest disturbances were not a major predictor of land use change.
Conclusions : Land use change is accelerating globally, causing a large increase in C emissions. Our results will help policy-makers prioritize forest management activities and land use planning by providing a quantitative framework that can enhance forest health and productivity. This work will also inform climate change mitigation strategies by understanding the role that land use change plays in C emissions.Numéro de notice : A2021-501 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE Nature : Article DOI : 10.1186/s13021-021-00183-6 Date de publication en ligne : 03/07/2021 En ligne : https://doi.org/10.1186/s13021-021-00183-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98099
in Carbon Balance and Management > vol 16 [01/02/2021] . - n° 20 (2021)[article]