Détail de l'auteur
Auteur Bai Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data / Xiaofang Sun in Geocarto international, vol 36 n° 14 ([01/08/2021])
[article]
Titre : Surface modelling of forest aboveground biomass based on remote sensing and forest inventory data Type de document : Article/Communication Auteurs : Xiaofang Sun, Auteur ; Bai Li, Auteur ; Zhengping Du, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1549 - 1564 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] biomasse aérienne
[Termes IGN] biomasse forestière
[Termes IGN] carbone
[Termes IGN] carte de la végétation
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données ICEsat
[Termes IGN] données lidar
[Termes IGN] données multisources
[Termes IGN] Geoscience Laser Altimeter System
[Termes IGN] image Terra-MODIS
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Kiangsi (Chine)
[Termes IGN] krigeage
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression des moindres carrés partielsRésumé : (auteur) An accurate estimation of forest aboveground biomass (AGB) is important for carbon accounting. In this study, six methods, including partial least squares regression, regression kriging, k-nearest neighbour, support vector machines, random forest and high accuracy surface modelling (HASM), were used to simulate forest AGB. Forest AGB was mapped by combining Geoscience Laser Altimeter System data, optical imagery and field inventory data. The Normalized Difference Vegetation Index (NDVI) and Wide Dynamic Range Vegetation Index (WDRVI0.2) of September and October, which had a stronger correlation with forest AGB than that of the peak growing season, were selected as predictor variables, along with tree cover percentage and three GLAS-derived parameters. The results of the different methods were evaluated. The HASM model had the best modelling accuracy (small MAE, RMSE, NRMSE, RMSV and NMSE and large R2). A forest AGB map of the study area was generated using the optimal model. Numéro de notice : A2021-555 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1655799 Date de publication en ligne : 28/08/2019 En ligne : https://doi.org/10.1080/10106049.2019.1655799 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98108
in Geocarto international > vol 36 n° 14 [01/08/2021] . - pp 1549 - 1564[article]