Détail de l'auteur
Auteur Nina Kranjec |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predicting tree species based on the geometry and density of aerial laser scanning point cloud of treetops / Nina Kranjec in Geodetski vestnik, vol 65 n° 2 (June - August 2021)
[article]
Titre : Predicting tree species based on the geometry and density of aerial laser scanning point cloud of treetops Type de document : Article/Communication Auteurs : Nina Kranjec, Auteur ; Mihaela Triglav Cekada, Auteur ; Milan Kobal, Auteur Année de publication : 2021 Article en page(s) : pp 234 - 259 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Acer pseudoplatanus
[Termes IGN] apprentissage automatique
[Termes IGN] arbre de décision
[Termes IGN] densité des points
[Termes IGN] données lidar
[Termes IGN] Fagus sylvatica
[Termes IGN] feuillu
[Termes IGN] figure géométrique
[Termes IGN] Fraxinus excelsior
[Termes IGN] houppier
[Termes IGN] identification automatique
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Larix decidua
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] Picea abies
[Termes IGN] Pinophyta
[Termes IGN] Pinus sylvestris
[Termes IGN] semis de points
[Termes IGN] SlovénieRésumé : (auteur) Based on the laser point clouds of 240 individual trees that were also identified in the field, we developed decision trees to distinguish deciduous and coniferous trees and individual tree species: Picea abies, Larix decidua, Pinus sylvestris, Fagus sylvatica, Acer pseudoplatanus, Fraxinus excelsior. The volume of the upper part of the tree crown (height of 3 m) and the average intensity of the laser reflections were used as explanatory variables. There were four aerial laser datasets: May 2012, September 2012, March 2013 and July 2015. We found that the combination of the volume and the average intensity of the first three laser datasets was the most reliable for predicting the selected tree species (60% model performance). A slightly poorer model performance was obtained if only the average intensity of the first three datasets was used (54% model performance). The worst model performance was given by the intensities (31 % model performance) or the volumes (21 % model performance) of dataset 4, which represents the national laser scanning of Slovenia (LSS). The best performing was the deciduous and coniferous separation, which achieved 75% and 95% success based on the test data (combination of volume and average intensity of the first three laser datasets). Using only the LSS intensities, deciduous and coniferous trees could be separated with 81% success. Numéro de notice : A2021-559 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.15292/geodetski-vestnik.2021.02.234-259 Date de publication en ligne : 27/05/2021 En ligne : https://doi.org/10.15292/geodetski-vestnik.2021.02.234-259 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98113
in Geodetski vestnik > vol 65 n° 2 (June - August 2021) . - pp 234 - 259[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2021021 RAB Revue Centre de documentation En réserve L003 Disponible