Détail de l'auteur
Auteur Shijing Liang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning / Xin Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
[article]
Titre : Rapid and large-scale mapping of flood inundation via integrating spaceborne synthetic aperture radar imagery with unsupervised deep learning Type de document : Article/Communication Auteurs : Xin Jiang, Auteur ; Shijing Liang, Auteur ; Xinyue He, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 36 - 50 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage non-dirigé
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] Google Earth Engine
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] inondation
[Termes IGN] modèle numérique de surface
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] surveillance hydrologiqueRésumé : (auteur) Synthetic aperture radar (SAR) has great potential for timely monitoring of flood information as it penetrates the clouds during flood events. Moreover, the proliferation of SAR satellites with high spatial and temporal resolution provides a tremendous opportunity to understand the flood risk and its quick response. However, traditional algorithms to extract flood inundation using SAR often require manual parameter tuning or data annotation, which presents a challenge for the rapid automated mapping of large and complex flooded scenarios. To address this issue, we proposed a segmentation algorithm for automatic flood mapping in near-real-time over vast areas and for all-weather conditions by integrating Sentinel-1 SAR imagery with an unsupervised machine learning approach named Felz-CNN. The algorithm consists of three phases: (i) super-pixel generation; (ii) convolutional neural network-based featurization; (iii) super-pixel aggregation. We evaluated the Felz-CNN algorithm by mapping flood inundation during the Yangtze River flood in 2020, covering a total study area of 1,140,300 km2. When validated on fine-resolution Planet satellite imagery, the algorithm accurately identified flood extent with producer and user accuracy of 93% and 94%, respectively. The results are indicative of the usefulness of our unsupervised approach for the application of flood mapping. Meanwhile, we overlapped the post-disaster inundation map with a 10-m resolution global land cover map (FROM-GLC10) to assess the damages to different land cover types. Of these types, cropland and residential settlements were most severely affected, with inundation areas of 9,430.36 km2 and 1,397.50 km2, respectively, results that are in agreement with statistics from relevant agencies. Compared with traditional supervised classification algorithms that require time-consuming data annotation, our unsupervised algorithm can be deployed directly to high-performance computing platforms such as Google Earth Engine and PIE-Engine to generate a large-spatial map of flood-affected areas within minutes, without time-consuming data downloading and processing. Importantly, this efficiency enables the fast and effective monitoring of flood conditions to aid in disaster governance and mitigation globally. Numéro de notice : A2021-560 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.05.019 Date de publication en ligne : 09/06/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.05.019 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98118
in ISPRS Journal of photogrammetry and remote sensing > vol 178 (August 2021) . - pp 36 - 50[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021081 SL Revue Centre de documentation Revues en salle Disponible 081-2021083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt