Détail de l'auteur
Auteur Claire Teillet |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fast unsupervised multi-scale characterization of urban landscapes based on Earth observation data / Claire Teillet in Remote sensing, vol 13 n° 12 (June-2 2021)
[article]
Titre : Fast unsupervised multi-scale characterization of urban landscapes based on Earth observation data Type de document : Article/Communication Auteurs : Claire Teillet, Auteur ; Benjamin Pillot, Auteur ; Thibault Catry, Auteur ; Laurent Demagistri, Auteur ; Dominique Lyszczarz, Auteur ; Marc Lang, Auteur ; Pierre Couteron, Auteur ; Nicolas Barbier, Auteur ; Arsène Adou Kouassi, Auteur ; Quentin Gunther , Auteur ; Nadine Dessay, Auteur Année de publication : 2021 Projets : GeoSud / , TOSCA / Article en page(s) : n° 2398 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Brasilia
[Termes IGN] caractérisation
[Termes IGN] Côte d'Ivoire
[Termes IGN] empreinte
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] paysage urbain
[Termes IGN] texture d'image
[Termes IGN] zone urbaineRésumé : (auteur) Most remote sensing studies of urban areas focus on a single scale, using supervised methodologies and very few analyses focus on the “neighborhood” scale. The lack of multi-scale analysis, together with the scarcity of training and validation datasets in many countries lead us to propose a single fast unsupervised method for the characterization of urban areas. With the FOTOTEX algorithm, this paper introduces a texture-based method to characterize urban areas at three nested scales: macro-scale (urban footprint), meso-scale (“neighbourhoods”) and micro-scale (objects). FOTOTEX combines a Fast Fourier Transform and a Principal Component Analysis to convert texture into frequency signal. Several parameters were tested over Sentinel-2 and Pleiades imagery on Bouake and Brasilia. Results showed that a single Sentinel-2 image better assesses the urban footprint than the global products. Pleiades images allowed discriminating neighbourhoods and urban objects using texture, which is correlated with metrics such as building density, built-up and vegetation proportions. The best configurations for each scale of analysis were determined and recommendations provided to users. The open FOTOTEX algorithm demonstrated a strong potential to characterize the three nested scales of urban areas, especially when training and validation data are scarce, and computing resources limited. Numéro de notice : A2021-505 Affiliation des auteurs : ENSG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13122398 Date de publication en ligne : 19/06/2021 En ligne : https://doi.org/10.3390/rs13122398 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98125
in Remote sensing > vol 13 n° 12 (June-2 2021) . - n° 2398[article]