Détail de l'auteur
Auteur Christopher J. Post |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) / Zhenbang Hao in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
[article]
Titre : Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN) Type de document : Article/Communication Auteurs : Zhenbang Hao, Auteur ; Lili Lin, Auteur ; Christopher J. Post, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 112 - 123 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Abies (genre)
[Termes IGN] Abies numidica
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] hauteur des arbres
[Termes IGN] houppier
[Termes IGN] image captée par drone
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] plantation forestièreRésumé : (auteur) Tree-crown and height are primary tree measurements in forest inventory. Convolutional neural networks (CNNs) are a class of neural networks, which can be used in forest inventory; however, no prior studies have developed a CNN model to detect tree crown and height simultaneously. This study is the first-of-its-kind that explored training a mask region-based convolutional neural network (Mask R-CNN) for automatically and concurrently detecting discontinuous tree crown and height of Chinese fir (Cunninghamia lanceolata (Lamb) Hook) in a plantation. A DJI Phantom4-Multispectral Unmanned Aerial Vehicle (UAV) was used to obtain high-resolution images of the study site, Shunchang County, China. Tree crown and height of Chinese fir was manually delineated and derived from this UAV imagery. A portion of the ground-truthed tree height values were used as a test set, and the remaining measurements were used as the model training data. Six different band combinations and derivations of the UAV imagery were used to detect tree crown and height, respectively (Multi band-DSM, RGB-DSM, NDVI-DSM, Multi band-CHM, RGB-CHM, and NDVI-CHM combination). The Mask R-CNN model with the NDVI-CHM combination achieved superior performance. The accuracy of Chinese fir’s individual tree-crown detection was considerable (F1 score = 84.68%), the Intersection over Union (IoU) of tree crown delineation was 91.27%, and tree height estimates were highly correlated with the height from UAV imagery (R2 = 0.97, RMSE = 0.11 m, rRMSE = 4.35%) and field measurement (R2 = 0.87, RMSE = 0.24 m, rRMSE = 9.67%). Results demonstrate that the input image with an CHM achieves higher accuracy of tree crown delineation and tree height assessment compared to an image with a DSM. The accuracy and efficiency of Mask R-CNN has a great potential to assist the application of remote sensing in forests. Numéro de notice : A2021-563 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2021.06.003 Date de publication en ligne : 18/06/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.06.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98128
in ISPRS Journal of photogrammetry and remote sensing > vol 178 (August 2021) . - pp 112 - 123[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021081 SL Revue Centre de documentation Revues en salle Disponible 081-2021083 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt