Détail de l'auteur
Auteur Zhenyu Tan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep translation (GAN) based change detection network for optical and SAR remote sensing images / Xinghua Li in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
[article]
Titre : A deep translation (GAN) based change detection network for optical and SAR remote sensing images Type de document : Article/Communication Auteurs : Xinghua Li, Auteur ; Zhengshun Du, Auteur ; Yanyuan Huang, Auteur ; Zhenyu Tan, Auteur Année de publication : 2021 Article en page(s) : pp 14 - 34 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] détection de changement
[Termes IGN] image à très haute résolution
[Termes IGN] image optique
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] méthode robuste
[Termes IGN] polarisation
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal profond
[Termes IGN] zone d'intérêtRésumé : (Editeur) With the development of space-based imaging technology, a larger and larger number of images with different modalities and resolutions are available. The optical images reflect the abundant spectral information and geometric shape of ground objects, whose qualities are degraded easily in poor atmospheric conditions. Although synthetic aperture radar (SAR) images cannot provide the spectral features of the region of interest (ROI), they can capture all-weather and all-time polarization information. In nature, optical and SAR images encapsulate lots of complementary information, which is of great significance for change detection (CD) in poor weather situations. However, due to the difference in imaging mechanisms of optical and SAR images, it is difficult to conduct their CD directly using the traditional difference or ratio algorithms. Most recent CD methods bring image translation to reduce their difference, but the results are obtained by ordinary algebraic methods and threshold segmentation with limited accuracy. Towards this end, this work proposes a deep translation based change detection network (DTCDN) for optical and SAR images. The deep translation firstly maps images from one domain (e.g., optical) to another domain (e.g., SAR) through a cyclic structure into the same feature space. With the similar characteristics after deep translation, they become comparable. Different from most previous researches, the translation results are imported to a supervised CD network that utilizes deep context features to separate the unchanged pixels and changed pixels. In the experiments, the proposed DTCDN was tested on four representative data sets from Gloucester, California, and Shuguang village. Compared with state-of-the-art methods, the effectiveness and robustness of the proposed method were confirmed. Numéro de notice : A2021-574 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.007 Date de publication en ligne : 23/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98174
in ISPRS Journal of photogrammetry and remote sensing > vol 179 (September 2021) . - pp 14 - 34[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021091 SL Revue Centre de documentation Revues en salle Disponible 081-2021093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt