Détail de l'auteur
Auteur Camile Sothe |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery / Camile Sothe in Geocarto international, vol 36 n° 19 ([01/11/2021])
[article]
Titre : Automatic tuning of segmentation parameters for tree crown delineation with VHR imagery Type de document : Article/Communication Auteurs : Camile Sothe, Auteur ; Claudia Maria de Almeida, Auteur ; Marcos Benedito Schimalski, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2241 - 2259 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Brésil
[Termes IGN] délimitation
[Termes IGN] forêt tropicale
[Termes IGN] houppier
[Termes IGN] identification de plantes
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] méthode heuristique
[Termes IGN] orthoimage
[Termes IGN] segmentation d'imageRésumé : (auteur) In the case of tree species delineation with very high spatial resolution (VHR) images, is desirable that each segment corresponds to one individual tree crown (ITC). However, in order to have a segmentation algorithm that generates segments matching to ITCs, its parameters ought to be properly tuned. Aiming to avoid time-consuming trial-and-error procedures associated with this task, some initiatives for the automatic search of segmentation parameters have been developed, such as metaheuristic methods. The objective of this work was to test the automatic tuning of segmentation parameters of three segmentation algorithms for the delineation of ITCs belonging to a native endangered species in a subtropical forest area, comparing this method with the traditional trial-and-error approach. Two datasets (WorldView-2 and an orthoimage) and three segmentation algorithms (multiresolution, mean-shift and graph-based) were tested. For the automatic approach, a hybrid metaheuristic method was applied to accomplish the automatic search of parameters for the segmentation algorithms, while for the trial-and-error, a visual assessment was conducted for each set of parameters tested. Four supervised metrics were used to assess the quality of the segmentation results for the optimization approach and for the final set of parameters chosen in the trial-and-error approach. Results showed that none of the algorithms, datasets or approaches differ too much. The evaluation metrics values were lower, indicating that the reference ITCs polygons matched with the segmentation results. Despite the similar results, the automatic tuning of segmentation parameters proved to be a feasible alternative to reduce the subjectivity and the human effort in the choice of segmentation parameters as compared to the trial-and error approach. Numéro de notice : A2021-765 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1690056 Date de publication en ligne : 14/11/2019 En ligne : https://doi.org/10.1080/10106049.2019.1690056 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98810
in Geocarto international > vol 36 n° 19 [01/11/2021] . - pp 2241 - 2259[article]Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data / Laura Elena Cué La Rosa in ISPRS Journal of photogrammetry and remote sensing, vol 179 (September 2021)
[article]
Titre : Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data Type de document : Article/Communication Auteurs : Laura Elena Cué La Rosa, Auteur ; Camile Sothe, Auteur ; Raul Queiroz Feitosa, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 35 - 49 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Brésil
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] densité de la végétation
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] espèce végétale
[Termes IGN] forêt tropicale
[Termes IGN] image captée par drone
[Termes IGN] image hyperspectrale
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) This work proposes a multi-task fully convolutional architecture for tree species mapping in dense forests from sparse and scarce polygon-level annotations using hyperspectral UAV-borne data. Our model implements a partial loss function that enables dense tree semantic labeling outcomes from non-dense training samples, and a distance regression complementary task that enforces tree crown boundary constraints and substantially improves the model performance. Our multi-task architecture uses a shared backbone network that learns common representations for both tasks and two task-specific decoders, one for the semantic segmentation output and one for the distance map regression. We report that introducing the complementary task boosts the semantic segmentation performance compared to the single-task counterpart in up to 11% reaching an average user’s accuracy of 88.63% and an average producer’s accuracy of 88.59%, achieving state-of-art performance for tree species classification in tropical forests. Numéro de notice : A2021-575 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.07.001 Date de publication en ligne : 28/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.07.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98175
in ISPRS Journal of photogrammetry and remote sensing > vol 179 (September 2021) . - pp 35 - 49[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021091 SL Revue Centre de documentation Revues en salle Disponible 081-2021093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2021092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt