Détail de l'auteur
Auteur Jiuping Zha |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimation of ionospheric total electron content using GNSS observations derived from a smartphone / Li Xu in GPS solutions, vol 26 n° 4 (October 2022)
[article]
Titre : Estimation of ionospheric total electron content using GNSS observations derived from a smartphone Type de document : Article/Communication Auteurs : Li Xu, Auteur ; Jiuping Zha, Auteur ; Min Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] modèle ionosphérique
[Termes IGN] phase
[Termes IGN] pondération
[Termes IGN] série de Fourier
[Termes IGN] téléphone intelligent
[Termes IGN] teneur totale en électrons
[Termes IGN] teneur verticale totale en électronsRésumé : (auteur) The global navigation satellite system (GNSS) measurements to determine ionospheric total electron content (TEC) are mainly derived from expensive geodetic-grade receivers, which are not conducive to high-density placement. In this work, we present an analysis of the performance of ionospheric TEC determined by GNSS dual-frequency measurements derived from the smartphone, taking the Xiaomi 8 (XMI8) as an example. First, the ionospheric observable is retrieved from the code and carrier phase data using the carrier-to-code leveling technique and a new carrier-to-noise weighting strategy instead of an elevation weighting strategy, considering the characteristic of the GNSS measurements from smartphones. Then, the absolute ionospheric slant TEC (STEC) values are isolated from the ionospheric observables by modeling with the generalized trigonometric series function. The experimental data, covering over 120 h, were taken from two situations: one is the data collected by the original smartphone antenna; the other is the external geodetic-grade antenna. The TEC data obtained from the collocated geodetic-grade receiver are used as reference data to evaluate the performance of the TEC values from XMI8. Compared to the reference data, the evaluation results show that the ionospheric STEC extraction accuracy can reach total electron content unit (TECU) values of 0.17 and 0.11 under the two different situations in the continuous carrier phase satellite arc without cycle slips. In addition, the VTEC modeling accuracy is above 5 and 2 TECU in the two different situations, respectively. Thus, we concluded that consumer-level GNSS chipsets are highly potential in the future to increase the ionospheric monitoring station density due to their low costs and good data quality. Numéro de notice : A2022-713 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01329-w Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1007/s10291-022-01329-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101591
in GPS solutions > vol 26 n° 4 (October 2022) . - n° 138[article]Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK / Baocheng Zhang in Journal of geodesy, vol 95 n° 8 (August 2021)
[article]
Titre : Integer-estimable FDMA model as an enabler of GLONASS PPP-RTK Type de document : Article/Communication Auteurs : Baocheng Zhang, Auteur ; Pengyu Hou, Auteur ; Jiuping Zha, Auteur ; Teng Liu, Auteur Année de publication : 2021 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] ambiguïté entière
[Termes IGN] correction ionosphérique
[Termes IGN] décalage d'horloge
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] positionnement par GLONASS
[Termes IGN] positionnement par GPS
[Termes IGN] positionnement ponctuel précis
[Termes IGN] résolution d'ambiguïté
[Termes IGN] temps de convergenceRésumé : (auteur) PPP-RTK extends the precise point positioning (PPP) concept by incorporating the idea of integer ambiguity resolution underlying the real-time kinematic (RTK) technique, making rapid initialization and high accuracy attainable with a standalone receiver. While PPP-RTK has been well achieved by using global navigation satellite system code division multiple access observables, GLONASS PPP-RTK is nonetheless challenging due to the nature of frequency division multiple access (FDMA) observables. In this work, we present a GLONASS PPP-RTK concept that takes advantage of the integer-estimable FDMA (IE-FDMA) model recently proposed in Teunissen (in GPS Solut 23(4):1–19, 2019. https://doi.org/10.1007/s10291-019-0889-0) to guarantee rigorous integer ambiguity resolution and simultaneously takes care of the presence of the inter-frequency biases (IFBs) in homogeneous and heterogeneous network configurations. When conducting GLONASS PPP-RTK based on a network of homogeneous receivers, code and phase observation equations are used to construct the IE-FDMA model, in which the IFBs are implicitly eliminated through reparameterization. For a network consisting of heterogeneous receivers, we exclude the code observables and develop a phase-only IE-FDMA model instead, thereby circumventing the adverse effects of IFBs. For verification purposes, we collect a set of five-day global positioning system (GPS) and GLONASS data from two regional networks: one equipped with homogeneous receivers and another with heterogeneous receivers. The results show that the GLONASS-specific network corrections, including satellite clocks, satellite phase biases, and ionospheric delays estimated by the two networks, are as precise as those of their GPS-specific counterparts. Via satellite clock and phase bias corrections, we succeed in fixing both GPS and GLONASS ambiguities, shortening the convergence time to 5 (12) min, compared to 11 (18) min of ambiguity-float positioning in the case of a homogeneous (heterogeneous) network with a data sampling rate of 30 s. For ambiguity-fixed positioning, the convergence time defined in this work also indicates the time to first fix since the positioning error converges to the centimeter level once successful integer ambiguity resolution is achieved. Adding ionospheric corrections further speeds up the initialization in the two networks, with the convergence time being reduced to 0.5 (3) min. Compared with GPS-only positioning, the integration of GPS and GLONASS yields an improvement of 8–34% in accuracy and leads to a reduction of 25–50% in convergence. Numéro de notice : A2021-585 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-021-01546-0 Date de publication en ligne : 26/07/2021 En ligne : https://doi.org/10.1007/s00190-021-01546-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98200
in Journal of geodesy > vol 95 n° 8 (August 2021) . - n° 91[article]