Détail de l'auteur
Auteur Haiyan Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Predicting user activity intensity using geographic interactions based on social media check-in data / Jing Li in ISPRS International journal of geo-information, vol 10 n° 8 (August 2021)
[article]
Titre : Predicting user activity intensity using geographic interactions based on social media check-in data Type de document : Article/Communication Auteurs : Jing Li, Auteur ; Wenyue Guo, Auteur ; Haiyan Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 555 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage profond
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] interaction spatiale
[Termes IGN] mobilité humaine
[Termes IGN] modèle non linéaire
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] utilisateurRésumé : (auteur) Predicting user activity intensity is crucial for various applications. However, existing studies have two main problems. First, as user activity intensity is nonstationary and nonlinear, traditional methods can hardly fit the nonlinear spatio-temporal relationships that characterize user mobility. Second, user movements between different areas are valuable, but have not been utilized for the construction of spatial relationships. Therefore, we propose a deep learning model, the geographical interactions-weighted graph convolutional network-gated recurrent unit (GGCN-GRU), which is good at fitting nonlinear spatio-temporal relationships and incorporates users’ geographic interactions to construct spatial relationships in the form of graphs as the input. The model consists of a graph convolutional network (GCN) and a gated recurrent unit (GRU). The GCN, which is efficient at processing graphs, extracts spatial features. These features are then input into the GRU, which extracts their temporal features. Finally, the GRU output is passed through a fully connected layer to obtain the predictions. We validated this model using a social media check-in dataset and found that the geographical interactions graph construction method performs better than the baselines. This indicates that our model is appropriate for fitting the complex nonlinear spatio-temporal relationships that characterize user mobility and helps improve prediction accuracy when considering geographic flows. Numéro de notice : A2021-588 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10080555 Date de publication en ligne : 17/08/2021 En ligne : https://doi.org/10.3390/ijgi10080555 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98206
in ISPRS International journal of geo-information > vol 10 n° 8 (August 2021) . - n° 555[article]