Détail de l'auteur
Auteur Simbarashe Jombo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery / Simbarashe Jombo in Applied geomatics, vol 13 n° 3 (September 2021)
[article]
Titre : Classification of tree species in a heterogeneous urban environment using object-based ensemble analysis and World View-2 satellite imagery Type de document : Article/Communication Auteurs : Simbarashe Jombo, Auteur ; Elhadi Adam, Auteur ; John Odindi, Auteur Année de publication : 2021 Article en page(s) : pp 373 - 387 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] arbre urbain
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce végétale
[Termes IGN] image à très haute résolution
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] indice de végétation
[Termes IGN] Johannesbourg
[Termes IGN] segmentation d'imageRésumé : (auteur) Urban trees are valuable in, inter alia, ameliorating air pollution and mitigating the effects associated with urban heat islands. The dearth of tree cover maps is a major challenge for urban planners in the management of urban trees. This work adopts remote sensing approaches to provide urban tree cover maps which can strengthen urban landscape management. Whereas traditional pixel-based classification approaches have been commonly used in image classification, they are not well-suited for urban tree mapping due to their failure to fully explore the image’s spatial and spectral characteristics. Object-based classification techniques produce improved accuracies using additional variables. This study depicts the capability of object-based image analysis (OBIA) in mapping common urban trees using very high-resolution (VHR) WorldView-2 (WV-2) imagery. The study tests the utility of WV-2 bands and other feature variables in the object-based mapping of common urban trees and other land cover classes. Furthermore, the study compares the utility of Support Vector Machine (SVM) and Random Forest (RF) in the object-based mapping of common urban trees and other land cover classes. The results show that the Normalized Difference Vegetation Index (NDVI), NIR 1 and NIR 2 bands were important in the classification of common urban trees and other land cover classes. The RF classifier performed better than SVM, with an overall accuracy of 91.9% as compared to 87.3% for SVM. The results of this study offer insight to urban authorities with knowledge on the segmentation parameters, classification methods and feature variables for mapping urban trees, valuable in urban tree management. Numéro de notice : A2021-624 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s12518-021-00358-3 Date de publication en ligne : 20/01/2021 En ligne : https://doi.org/10.1007/s12518-021-00358-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98248
in Applied geomatics > vol 13 n° 3 (September 2021) . - pp 373 - 387[article]