Détail de l'auteur
Auteur Jiasong Li |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning / Jun Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
[article]
Titre : Extraction from high-resolution remote sensing images based on multi-scale segmentation and case-based reasoning Type de document : Article/Communication Auteurs : Jun Xu, Auteur ; Jiasong Li, Auteur ; Hao Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 199 - 205 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] classification barycentrique
[Termes IGN] distance de Kullback-Leibler
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] masque
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] séparateur à vaste margeRésumé : (auteur) In object-oriented information extraction from high-resolution remote sensing images, the segmentation and classification of images involves considerable manual participation, which limits the development of automation and intelligence for these purposes. Based on the multi-scale segmentation strategy and case-based reasoning, a new method for extracting high-resolution remote sensing image information by fully using the image and nonimage features of the case object is proposed. Feature selection and weight learning are used to construct a multi-level and multi-layer case library model of surface cover classification reasoning. Combined with image mask technology, this method is applied to extract surface cover classification information from remote sensing images using different sensors, time, and regions. Finally, through evaluation of the extraction and recognition rates, the accuracy and effectiveness of this method was verified. Numéro de notice : A2022-202 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.20-00104R3 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.20-00104R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100006
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 199 - 205[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022031 SL Revue Centre de documentation Revues en salle Disponible ComNet: combinational neural network for object detection in UAV-borne thermal images / Minglei Li in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
[article]
Titre : ComNet: combinational neural network for object detection in UAV-borne thermal images Type de document : Article/Communication Auteurs : Minglei Li, Auteur ; Xingke Zhao, Auteur ; Jiasong Li, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6662 - 6673 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] image captée par drone
[Termes IGN] image thermique
[Termes IGN] piéton
[Termes IGN] saillance
[Termes IGN] véhiculeRésumé : (auteur) We propose a deep learning-based method for object detection in UAV-borne thermal images that have the capability of observing scenes in both day and night. Compared with visible images, thermal images have lower requirements for illumination conditions, but they typically have blurred edges and low contrast. Using a boundary-aware salient object detection network, we extract the saliency maps of the thermal images to improve the distinguishability. Thermal images are augmented with the corresponding saliency maps through channel replacement and pixel-level weighted fusion methods. Considering the limited computing power of UAV platforms, a lightweight combinational neural network ComNet is used as the core object detection method. The YOLOv3 model trained on the original images is used as a benchmark and compared with the proposed method. In the experiments, we analyze the detection performances of the ComNet models with different image fusion schemes. The experimental results show that the average precisions (APs) for pedestrian and vehicle detection have been improved by 2%~5% compared with the benchmark without saliency map fusion and MobileNetv2. The detection speed is increased by over 50%, while the model size is reduced by 58%. The results demonstrate that the proposed method provides a compromise model, which has application potential in UAV-borne detection tasks. Numéro de notice : A2021-632 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3029945 Date de publication en ligne : 21/10/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3029945 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98288
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 6662 - 6673[article]