Détail de l'auteur
Auteur Cheng Jin |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detail injection-based deep convolutional neural networks for pansharpening / Liang-Jian Deng in IEEE Transactions on geoscience and remote sensing, vol 59 n° 8 (August 2021)
[article]
Titre : Detail injection-based deep convolutional neural networks for pansharpening Type de document : Article/Communication Auteurs : Liang-Jian Deng, Auteur ; Gemine Vivone, Auteur ; Cheng Jin, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 6995 - 7010 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multirésolution
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image à basse résolution
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] injection d'image
[Termes IGN] modèle non linéaire
[Termes IGN] pansharpening (fusion d'images)Résumé : (auteur) The fusion of high spatial resolution panchromatic (PAN) data with simultaneously acquired multispectral (MS) data with the lower spatial resolution is a hot topic, which is often called pansharpening. In this article, we exploit the combination of machine learning techniques and fusion schemes introduced to address the pansharpening problem. In particular, deep convolutional neural networks (DCNNs) are proposed to solve this issue. The latter is combined first with the traditional component substitution and multiresolution analysis fusion schemes in order to estimate the nonlinear injection models that rule the combination of the upsampled low-resolution MS image with the extracted details exploiting the two philosophies. Furthermore, inspired by these two approaches, we also developed another DCNN for pansharpening. This is fed by the direct difference between the PAN image and the upsampled low-resolution MS image. Extensive experiments conducted both at reduced and full resolutions demonstrate that this latter convolutional neural network outperforms both the other detail injection-based proposals and several state-of-the-art pansharpening methods. Numéro de notice : A2021-639 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3031366 En ligne : https://doi.org/10.1109/TGRS.2020.3031366 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98293
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 8 (August 2021) . - pp 6995 - 7010[article]