Détail de l'auteur
Auteur Won Mo Jung |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploitation of deep learning in the automatic detection of cracks on paved roads / Won Mo Jung in Geomatica, vol 73 n° 2 (June 2019)
[article]
Titre : Exploitation of deep learning in the automatic detection of cracks on paved roads Type de document : Article/Communication Auteurs : Won Mo Jung, Auteur ; Faizaan Naveed, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 29 - 44 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] autoroute
[Termes IGN] chaussée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] Ontario (Canada)Mots-clés libres : fissure Résumé : (auteur) With the advance of deep learning networks, their applications in the assessment of pavement conditions are gaining more attention. A convolutional neural network (CNN) is the most commonly used network in image classification. In terms of pavement assessment, most existing CNNs are designed to only distinguish between cracks and non-cracks. Few networks classify cracks in different levels of severity. Information on the severity of pavement cracks is critical for pavement repair services. In this study, the state-of-the-art CNN used in the detection of pavement cracks was improved to localize the cracks and identify their distress levels based on three categories (low, medium, and high). In addition, a fully convolutional network (FCN) was, for the first time, utilized in the detection of pavement cracks. These designed architectures were validated using the data acquired on four highways in Ontario, Canada, and compared with the ground truth that was provided by the Ministry of Transportation of Ontario (MTO). The results showed that with the improved CNN, the prediction precision on a series of test image patches were 72.9%, 73.9%, and 73.1% for cracks with the severity levels of low, medium, and high, respectively. The precision for the FCN was tested on whole pavement images, resulting in 62.8%, 63.3%, and 66.4%, respectively, for cracks with the severity levels of low, medium, and high. It is worth mentioning that the ground truth contained some uncertainties, which partially contributed to the relatively low precision. Numéro de notice : A2019-657 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1139/geomat-2019-0008 En ligne : https://doi.org/10.1139/geomat-2019-0008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98324
in Geomatica > vol 73 n° 2 (June 2019) . - pp 29 - 44[article]