Détail de l'auteur
Auteur Kenneth Nyström |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Data assimilation of growing stock volume using a sequence of remote sensing data from different sensors / Niels Lindgren in Canadian journal of remote sensing, vol 48 n° 2 (April 2022)
[article]
Titre : Data assimilation of growing stock volume using a sequence of remote sensing data from different sensors Titre original : Assimilation de données de volume de bois à l’aide d’une séquence de données de télédétection provenant de différents capteurs Type de document : Article/Communication Auteurs : Niels Lindgren, Auteur ; Hakan Olsson, Auteur ; Kenneth Nyström, Auteur ; Mattias Nyström, Auteur ; Göran Stahl, Auteur Année de publication : 2022 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Betula (genre)
[Termes IGN] capital sur pied
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage des données
[Termes IGN] filtre de Kalman
[Termes IGN] forêt boréale
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Quercus (genre)
[Termes IGN] Suède
[Termes IGN] volume en boisRésumé : (auteur) Airborne Laser Scanning (ALS) has implied a disruptive transformation of how data are gathered for forest management planning in Nordic countries. We show in this study that the accuracy of ALS predictions of growing stock volume can be maintained and even improved over time if they are forecasted and assimilated with more frequent but less accurate remote sensing data sources like satellite images, digital photogrammetry, and InSAR. We obtained these results by introducing important methodological adaptations to data assimilation compared to previous forestry studies in Sweden. On a test site in the southwest of Sweden (58°27′N, 13°39′E), we evaluated the performance of the extended Kalman filter and a proposed modified filter that accounts for error correlations. We also applied classical calibration to the remote sensing predictions. We evaluated the developed methods using a dataset with nine different acquisitions of remotely sensed data from a mix of sensors over four years, starting and ending with ALS-based predictions of growing stock volume. The results showed that the modified filter and the calibrated predictions performed better than the standard extended Kalman filter and that at the endpoint the prediction based on data assimilation implied an improved accuracy (25.0% RMSE), compared to a new ALS-based prediction (27.5% RMSE). Numéro de notice : A2022-144 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1080/07038992.2021.1988542 Date de publication en ligne : 17/10/2021 En ligne : https://doi.org/10.1080/07038992.2021.1988542 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99985
in Canadian journal of remote sensing > vol 48 n° 2 (April 2022) . - pp[article]Updating of forest stand data by using recent digital photogrammetry in combination with older airborne laser scanning data / Niels Lindgren in Scandinavian journal of forest research, vol 36 n° 5 ([01/07/2021])
[article]
Titre : Updating of forest stand data by using recent digital photogrammetry in combination with older airborne laser scanning data Type de document : Article/Communication Auteurs : Niels Lindgren, Auteur ; André Wästlund, Auteur ; Inka Bohlin, Auteur ; Kenneth Nyström, Auteur ; Mats Nilsson, Auteur ; Hakan Olsson, Auteur Année de publication : 2021 Article en page(s) : pp 401 - 407 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Betula (genre)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] orthoimage
[Termes IGN] photogrammétrie numérique
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Termes IGN] Suède
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Accurate and up-to-date data about growing stock volume are essential for forest management planning. Airborne Laser Scanning (ALS) is known for producing accurate wall-to-wall predictions but the data are at present collected at long time intervals. Digital Photogrammetry (DP) is cheaper and often more frequently available but known to be less accurate. This study investigates the potential of using contemporary DP data together with older ALS data and compares this with the case when only old ALS data are trained with recent field data. Combining ALS data from 2010 to 2011 with DP data from 2015, both trained with National Forest Inventory (NFI) field plot data from 2015, improved predictions of growing stock volume. Validation using data from 100 stands inventoried in 2015 gave an RMSE of 24.3% utilizing both old ALS data and recent DP data, 26.0% for old ALS only and 24.9% for recent DP only. If information about management actions were assumed available, combining old ALS and recent DP gave RMSE of 23.0%, only ALS 23.3% and only DP 23.8%. Numéro de notice : A2021-604 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1080/02827581.2021.1936153 En ligne : https://doi.org/10.1080/02827581.2021.1936153 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98333
in Scandinavian journal of forest research > vol 36 n° 5 [01/07/2021] . - pp 401 - 407[article]