Détail de l'auteur
Auteur Menglin Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A learning-based approach to automatically evaluate the quality of sequential color schemes for maps / Taisheng Chen in Cartography and Geographic Information Science, Vol 48 n° 5 (September 2021)
[article]
Titre : A learning-based approach to automatically evaluate the quality of sequential color schemes for maps Type de document : Article/Communication Auteurs : Taisheng Chen, Auteur ; Menglin Chen, Auteur ; A - Xing Zhu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 377-392 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Rédaction cartographique
[Termes IGN] amélioration des couleurs
[Termes IGN] apprentissage automatique
[Termes IGN] charte de couleurs
[Termes IGN] cohérence des couleurs
[Termes IGN] contraste de couleurs
[Termes IGN] couleur (rédaction cartographique)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] palette de couleurs
[Termes IGN] saturation de la couleur
[Termes IGN] visualisation cartographiqueRésumé : (auteur) Color quality evaluation is key to judging map quality, which can improve data visualization and communication. However, most existing methods for evaluating map colors are tedious and subjective manual methods. In this paper, we study sequential color schemes, a widely used map color type and propose a learning-based approach for evaluating the color quality. The approach consists of two steps. First, we extract and characterize the cartographic factors for determining the quality of sequential color schemes, such as color order, color match, color harmony, color discrimination and color uniformity. Second, we present a model to predict the color quality based on AdaBoost, a type of ensemble learning algorithm with excellent classification performance and use these factors as input data. We conduct a case study based on 781 samples and train the AdaBoost-based model to predict the quality of sequential color schemes. To evaluate the model’s performance, we calculated the area under the receiver operating characteristic (ROC) curve (AUC). The AUC values are 0.983 and 0.977 on the training data and testing data, respectively. These results indicate that the proposed approach can be used to automatically evaluate the quality of sequential color schemes for maps, which helps mapmakers select good colors. Numéro de notice : A2021-642 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1936184 Date de publication en ligne : 29/06/2021 En ligne : https://doi.org/10.1080/15230406.2021.1936184 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98335
in Cartography and Geographic Information Science > Vol 48 n° 5 (September 2021) . - pp 377-392[article]