Détail de l'auteur
Auteur Zhongliang Jing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hyperspectral image fusion and multitemporal image fusion by joint sparsity / Han Pan in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 9 (September 2021)
[article]
Titre : Hyperspectral image fusion and multitemporal image fusion by joint sparsity Type de document : Article/Communication Auteurs : Han Pan, Auteur ; Zhongliang Jing, Auteur ; Henry Leung, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 7887 - 7900 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] correction d'image
[Termes IGN] flou
[Termes IGN] fusion d'images
[Termes IGN] image hyperspectrale
[Termes IGN] image multitemporelle
[Termes IGN] image panchromatique
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] représentation parcimonieuseRésumé : (auteur) Different image fusion systems have been developed to deal with the massive amounts of image data for different applications, such as remote sensing, computer vision, and environment monitoring. However, the generalizability and versatility of these fusion systems remain unknown. This article proposes an efficient regularization framework to achieve different kinds of fusion tasks accounting for the spatiospectral and spatiotemporal variabilities of the fusion process. A joint minimization functional is developed by taking an advantage of a composite regularizer for enforcing joint sparsity in the gradient domain and the frame domain. The proposed composite regularizer is composed of the Hessian Schatten-norm regularization and contourlet-based regularization terms. The resulting problems are solved by the alternating direction method of multipliers (ADMM). The effectiveness of the proposed method is validated in a variety of image fusion experiments: 1) hyperspectral (HS) and panchromatic image fusion; 2) HS and multispectral image fusion; 3) multitemporal image fusion (MIF); and 4) multi-image deblurring. Results show promising performance compared with state-of-the-art fusion methods. Numéro de notice : A2021-649 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3039046 Date de publication en ligne : 07/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3039046 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98360
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 9 (September 2021) . - pp 7887 - 7900[article]