Détail de l'auteur
Auteur Raimund Schnürer |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detection of pictorial map objects with convolutional neural networks / Raimund Schnürer in Cartographic journal (the), vol 58 n° 1 (February 2021)
[article]
Titre : Detection of pictorial map objects with convolutional neural networks Type de document : Article/Communication Auteurs : Raimund Schnürer, Auteur ; René Sieber, Auteur ; Jost Schmid-Lanter, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 50 - 68 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'images
[Termes IGN] bibliothèque numérique
[Termes IGN] carte ancienne
[Termes IGN] carte numérique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] objet cartographique
[Termes IGN] pictogrammeRésumé : (auteur) In this work, realistically drawn objects are identified on digital maps by convolutional neural networks. For the first two experiments, 6200 images were retrieved from Pinterest. While alternating image input options, two binary classifiers based on Xception and InceptionResNetV2 were trained to separate maps and pictorial maps. Results showed that the accuracy is 95–97% to distinguish maps from other images, whereas maps with pictorial objects are correctly classified at rates of 87–92%. For a third experiment, bounding boxes of 3200 sailing ships were annotated in historic maps from different digital libraries. Faster R-CNN and RetinaNet were compared to determine the box coordinates, while adjusting anchor scales and examining configurations for small objects. A resulting average precision of 32% was obtained for Faster R-CNN and of 36% for RetinaNet. Research outcomes are relevant for trawling map images on the Internet and for enhancing the advanced search of digital map catalogues. Numéro de notice : A2021-651 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00087041.2020.1738112 Date de publication en ligne : 11/09/2020 En ligne : https://doi.org/10.1080/00087041.2020.1738112 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98381
in Cartographic journal (the) > vol 58 n° 1 (February 2021) . - pp 50 - 68[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 030-2021011 RAB Revue Centre de documentation En réserve L003 Disponible